全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带有违约的延迟时间检查和维修策略的研究
Research on Delay Time Inspection and Maintenance Strategies with Default

DOI: 10.12677/ORF.2024.141050, PP. 539-551

Keywords: 延迟时间,检查间隔,违约,维修策略
Delay Time
, Inspection Interval, Default, Maintenance Strategy

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对设备存在异常和故障两种相关性缺陷,使用延迟时间概念,研究了检查和维修策略。假定设备随时间性能下降,可能发生异常,进而导致故障。由于缺陷的发生存在一定的时间延迟,将设备的运行周期按序划分为名义检查和实际检查两个阶段。通过优化检查间隔、实际检查节点和计划更新节点,使设备的平均成本率最小化。考虑了维修违约对决策方案的影响。仿真计算验证了模型的有效性,灵敏度分析讨论了模型参数对最佳决策方案的影响。
Aiming at the correlation defects of anomalies and failures in the system, the concept of delay time was used to study inspection and maintenance strategies. Assuming that the system’s performance decreases over time, and anomalies may occur, leading to failures. Due to a certain time delay in the occurrence of defects, the operating cycle of the system is sequentially divided into two stages: nominal inspection and actual inspection. By optimizing inspection intervals, actual inspection nodes, and planned update nodes, the average cost rate of the system is minimized. The influence of maintenance default on the decision scheme is considered. Simulation calculations have verified the effectiveness of the model, and sensitivity analysis has discussed the impact of model parameters on the optimal decision scheme.

References

[1]  Wang, W., Wu, Z., Xiong, J., et al. (2018) Redundancy Optimization of Cold-Standby Systems under Periodic In-spection and Maintenance. Reliability Engineering & System Safety, 180, 394-402.
https://doi.org/10.1016/j.ress.2018.08.004
[2]  Zhang, C., Li, Q. and Liu, Y. (2020) Optimal Replacement Policy with Minimal Repair and Preventive Maintenance of an Aircraft Structure Subjected to Corrosion. Soft Computing, 24, 375-384.
https://doi.org/10.1007/s00500-019-03919-2
[3]  Mendes, A.A., Ribeiro, J.L.D. and Coit, DW. (2017) Opti-mal Time Interval between Periodic Inspections for A Two-Component Cold Standby Multistate System. IEEE Transactions on Reliability, 66, 559-574.
https://doi.org/10.1109/TR.2017.2689501
[4]  Taghipour, S. and Banjevic, D. (2012) Optimal Inspection of a Complex System Subject to Periodic and Opportunistic Inspections and Preventive Replacements. European Journal of Operational Research, 220, 649-660.
https://doi.org/10.1016/j.ejor.2012.02.002
[5]  Wang, J., Dong, W. and Fang, Z. (2020) Extended Periodic Inspection Policies for a Single Unit System Subject to Shocks. IEEE Access, 8, 119300-119311.
https://doi.org/10.1109/ACCESS.2020.3005222
[6]  Cavalcante, C.A.V., Lopes, R.S. and Scarf, P.A. (2021) Inspection and Replacement Policy with a Fixed Periodic Schedule. Reliability Engineering &System Safety, 208, 1-10.
https://doi.org/10.1016/j.ress.2020.107402
[7]  Liu, G., Chen, S., Jin, H., et al. (2021) Optimum Op-portunistic Maintenance Schedule Incorporating Delay Time Theory with Imperfect Maintenance. Reliability En-gineering & System Safety, 213, 1-14.
https://doi.org/10.1016/j.ress.2021.107668
[8]  Souza, N.M. and de Almeida Filho, A.T. (2020) A Systematic Airport Runway Maintenance and Inspection Policy Based on a Delay Time Modeling Approach. Automation in Construction, 110, 1-10.
https://doi.org/10.1016/j.autcon.2019.103039
[9]  Berrade, M.D., Scarf, P.A. and Cavalcante, C.A.V. (2017) A Study of Postponed Replacement in a Delay Time Model. Reliability Engineering & System Safety, 168, 70-79.
https://doi.org/10.1016/j.ress.2017.04.006
[10]  Tiwari, S.K., Singh, R.K. and Kumar.B. (2022) Optimizing PM Intervals for Manufacturing Industries Using Delay-Time Analysis and MOGA. Jordan Journal of Mechanical & Industrial Engineering, 16, 327-332.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413