全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

真菌蛋白对于高脂饮食摄取小鼠体脂及肠道菌群变化之探讨
Effects of Mycoprotein on Body Fat and Gut Microbiota in High-Fat Diet-Fed Mice

DOI: 10.12677/HJFNS.2024.131016, PP. 124-132

Keywords: 真菌蛋白,Fusarium venenatum菌丝体,大豆蛋白,体重,体脂,肠道菌群
Mycoprotein
, Fusarium venenatum mycelium, Soy Protein, Body Weight, Body Fat, Gut Microbiota

Full-Text   Cite this paper   Add to My Lib

Abstract:

因为全球在饮食上对于健康要求及环境保护等意识提升,非动物性来源之替代性蛋白的重要性亦随之增加。本研究将针对发酵来源的真菌蛋白(Fusarium venenatum菌丝体)以及传统植物来源的大豆蛋白两种替代性蛋白对于高脂饮食诱发之体重、体脂肪及肠道菌群变化进行探讨。本实验将8周龄雄性C57BL/6小鼠分为负对照组、真菌蛋白组及大豆蛋白组共三组,连续喂食8周高脂饮食实验饲料,负对照组饲料蛋白质来源为酪蛋白,其他两组则分别以真菌蛋白或大豆蛋白进行取代。实验结果指出,真菌蛋白可显著降低高脂饮食摄取小鼠的体重、血清三酸甘油酯含量、内脏脂肪与皮下脂肪重量。大豆蛋白则可显著降低小鼠肾脏周边脂肪重量。两种替代性蛋白对高脂饮食摄取小鼠的肠道菌群表现会造成不同程度的改变。综合以上试验结果,真菌蛋白及大豆蛋白对于高脂饮食摄取诱发之肥胖症状均具有改善效果,其中以真菌蛋白的改善效果更为显著,有望成为替代性蛋白市场上的新趋势。
As the global awareness of dietary health requirements and environmental protection increases, the importance of alternative proteins from non-animal sources has increased as well. This study will explore the effects of two alternative proteins, fermented mycoprotein (Fusarium venenatum mycelium) and traditional plant-derived soy protein, on changes in body weight, body fat and gut microbiota induced by a high-fat diet. C57BL/6 mice were divided into three groups: negative control group, mycoprotein group and soy protein group. They were fed high-fat diet for 8 weeks to induce obesity symptoms. The protein source of the feed in the negative control group was casein, while the other two groups were replaced with mycoprotein or soy protein respectively. The results showed that mycoprotein significantly reduced the body weight, serum triglyceride content, visceral fat and subcutaneous fat in high-fat diet-fed mice. Soy protein significantly reduced the perirenal fat pads. Two alternative proteins can cause varying degrees of changes in the intestinal flora of high-fat diet-fed mice. Both mycoprotein and soybean protein have beneficial effects on improving obesity symptoms induced by high-fat diet intake. Among them, the improvement of mycoprotein is more effective and is expected to become a new trend in the alternative protein market.

References

[1]  Barraud. E., Brouet, A.M., Perrin, S., et al. (2023) Ten Billion Mouths to Feed by 2050. EPFL.
https://longread.epfl.ch/en/dossier/ten-billion-mouths-to-feed-by-2050/
[2]  联合国粮食及农业组织. 2023年世界粮食安全和营养状况[EB/OL].
https://www.fao.org/3/cc3017zh/online/cc3017zh.html, 2023-12-29.
[3]  陈志维、杨侑馨. 亚太地区植物肉产业发展趋势[EB/OL].
https://outlook.stpi.narl.org.tw/index/focus-news/4b11410082b11725018316175d2970f6, 2023-12-29.
[4]  Schiermeier, Q. (2019) Eat Less Meat: UN Climate-Change Report Calls for Change to Human Diet. Nature, 572, 291-292.
https://doi.org/10.1038/d41586-019-02409-7
[5]  Wood, P. and Tavan, M. (2022) A Re-view of the Alternative Protein Industry. Current Opinion in Food Science, 47, Article ID: 100869.
https://doi.org/10.1016/j.cofs.2022.100869
[6]  Zhang, T., Dou, W., Zhang, X., et al. (2021) The Development History and Resent Updates on Soy Protein-Based Meat Alternatives. Trends in Food Science & Technology, 109, 702-710.
https://doi.org/10.1016/j.tifs.2021.01.060
[7]  Parrini, S., Aquilani, C., Pugliese, C., et al. (2023) Soy-bean Replacement by Alternative Protein Sources in Pig Nutrition and Its Effect on Meat Quality. Animals, 13, Article 494.
https://doi.org/10.3390/ani13030494
[8]  Quintieri, L., Nitride, C., Angelis, E.D., et al. (2023) Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients, 15, Article 1509.
https://doi.org/10.3390/nu15061509
[9]  陈庆源. 真菌肉品之现况与展望[J]. 食品工业, 2022(54): 44-49.
[10]  Wikandari, R., Manikharda, Baldermann, S., et al. (2021) Application of Cell Culture Technology and Ge-netic Engineering for Production of Future Foods and Crop Improvement to Strengthen Food Security. Bioengineered, 12, 11305-11330.
https://doi.org/10.1080/21655979.2021.2003665
[11]  杨碧华、陈劲初. 我国首例真菌蛋白-未来肉之开发及其市场潜力[J]. 食品资讯, 2023(316): 28-30.
[12]  Coelho, M.O.C, Monteyne, A.J., Dunlop, M.V., et al. (2020) Mycoprotein as a Possible Alternative Source of Dietary Protein to Support Muscle and Metabolic Health. Nutri-tion Reviews, 78, 486-497.
https://doi.org/10.1093/nutrit/nuz077
[13]  Chang, C.J., Lin, C.S., Lu, C.C., et al. (2015) Ganoderma lucidum Reduces Obesity in Mice by Modulating the Composition of the Gut Microbiota. Nature Commu-nications, 23, Article No. 7489.
https://doi.org/10.1038/ncomms8489
[14]  Wu, T.R., Lin, C.S., Chang, C.J., et al. (2019) Gut Commensal Parabacteroides goldsteinii Plays a Predominant Role in the Anti-Obesity Effects of Polysaccha-rides Isolated from Hirsutellasinensis. Gut, 68, 248-262.
https://doi.org/10.1136/gutjnl-2017-315458
[15]  Hoseyni, S.M., Mohammadifar, M.A. and Khosravi-Darani, K. (2010) Production and Rheological Evaluation of Mycoprotein Produced from Fusariumvenenatum ATCC 20334 by Surface Culture Method. IRJOB, 1, 13-18.
[16]  Lang, P., Hasselwander, S., Li, H.G., et al. (2019) Effects of Different Diets Used in Diet-Induced Obesity Models on Insulin Resistance and Vascular Dysfunction in C57BL/6 Mice. Scientific Reports, 9, Article No. 19556.
https://doi.org/10.1038/s41598-019-55987-x
[17]  Koontanatechanon, A., Wongphatcharachai, M., Nonthabenja-wan, N., et al. (2022) Theeffects of Increasing Dietary Fat on Serum Lipid Profile and Modification of Gut Microbiome in C57BL/6N Mice. Journal of Oleo Science, 71, 1039-1049.
https://doi.org/10.5650/jos.ess22009
[18]  The Jack-son Laboratory.
http://jaxmice.jax.org/strain/000642.html
[19]  Wang, Y., Tang, D., Dong, R., et al. (2021) Chi-tosan Oligosaccharide Ameliorates Metabolic Syndrome Induced by Overnutrition via Altering Intestinal Microbiota. Frontiers in Nutrition, 8, Article 743492.
https://doi.org/10.3389/fnut.2021.743492
[20]  Takeuchi, T., Kameyama, K., Miyauchi, E., et al. (2023) Fatty Acid Overproduction by Gut Commensal Microbiota Exacerbates Obesity. Cell Metabolism, 35, 361-375.E9.
https://doi.org/10.1016/j.cmet.2022.12.013
[21]  Kubeck, R., Bonet-Ripoll, C., Hoffmann, C., et al. (2016) Dietary Fat and Gut Microbiota Interactions Determine Diet-Induced Obesity in Mice. Molecular Metabolism, 5, 1162-1174.
https://doi.org/10.1016/j.molmet.2016.10.001
[22]  Colosimo, R., Mulet-Cabero, A.I., Warren, F.J., et al. (2020) Mycoprotein Ingredient Structure Reduces Lipolysis and Binds Bile Salts during Simulated Gastrointestinal Digestion. Food & Function, 11, 10896-10906.
https://doi.org/10.1039/D0FO02002H
[23]  Wang, X., Li, L., Bai, M., et al. (2022) Dietary Supplementation with Tolypocladiumsinense Mycelium Prevents Dyslipidemia Inflammation in High Fat Diet Mice by Modulation of Gut Mi-crobiota in Mice. Frontiers in Immunology, 13, Article 977528.
https://doi.org/10.3389/fimmu.2022.977528
[24]  He, J., Zhang, P., Shen, L., et al. (2020) Short-Chain Fatty Acids and Their Association with Signalingpathways in Inflammation, Glucose and Lipid Metabolism. International Journal of Molecular Sciences, 21, Article 6356.
https://doi.org/10.3390/ijms21176356
[25]  Zhou, H., Yu, B., Sun, J., et al. (2021) Short-Chain Fatty Acids Can Improve Lipid and Glucose Metabolism Independently of the Pig Gut Microbiota. Journal of Animal Science and Bio-technology, 12, Article No. 61.
https://doi.org/10.1186/s40104-021-00581-3
[26]  Coelho, M.O.C., MOnteyne, A.J., Dirks, M., et al. (2021) Daily Mycoprotein Consumption for 1 Week Does Not Affect Insulin Sensitivity or Glycaemic Control But Modulates the Plasma Lipidome in Healthy Adults: A Randomised Controlled Trial. British Journal of Nutrition, 125, 147-160.
https://doi.org/10.1017/S0007114520002524

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133