全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PEDOT:PSS在压阻式柔性压力传感器中的应用研究进展
Research Progress of PEDOT:PSS Application in Piezoresistive Flexible Pressure Sensor

DOI: 10.12677/JAPC.2024.131010, PP. 74-86

Keywords: 柔性压阻传感器,PEDOT:PSS,导电聚合物
Flexible Piezoresistive Sensors
, PEDOT:PSS, Conductive Polymers

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着智能化技术及物联网的不断发展,柔性压力传感器作为可穿戴电子设备和电子皮肤的核心器件,拥有了越来越广阔的市场。为了获得高性能的柔性压力传感器,研究者们在传感器的材料、结构及器件设计等方面进行一系列的创新型研究工作。聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)是一种应用广泛的导电聚合物。由于其高导电性,易于加工和生物相容性而受到了极大的关注。作为一种灵活的多用途材料,PEDOT:PSS可以发展成各种形式,并对新兴的传感应用产生了重大影响。本文综述了近年来PEDOT:PSS在柔性压阻传感器中的应用研究的最新进展,并介绍了PEDOT:PSS在压阻传感器中的应用及这些传感器性能提高的方法和机理。
With the continuous advancement of intelligent technology and the Internet of Things, flexible pressure sensors have gained a significantly broader market as they serve as core components in wearable electronic devices and electronic skin. In order to achieve high-performance flexible pressure sensors, researchers have conducted innovative research in sensor materials, structures, and device designs. Poly(3,4-ethylenedioxythiophene):Polystyrene sulfonate (PEDOT:PSS) is a widely utilized conductive polymer that has garnered considerable attention due to its exceptional electrical conductivity, ease of processing, and biocompatibility. As a versatile and flexible material, PEDOT:PSS can be developed into various forms with significant implications for emerging sensing applications. This paper provides an overview of recent advancements in utilizing PEDOT:PSS for flexible piezoresistive sensors while also discussing its application in such sensors along with methods and mechanisms employed to enhance their performance.

References

[1]  Lin, X.Z., Gao, S., Fei, T., et al. (2019) Study on a Paper-Based Piezoresistive Sensor Applied to Monitoring Human Physiological Signals. Sensors and Actuators A: Physical, 292, 66-70.
https://doi.org/10.1016/j.sna.2019.04.009
[2]  Lin, X.Z., Zhang, T., Cao, J.H., et al. (2020) Flexible Piezoresistive Sensors Based on Conducting Polymer-Coated Fabric Applied to Human Physiological Signals Monitoring. Journal of Bionic Engineering, 17, 55-63.
https://doi.org/10.1007/s42235-020-0004-9
[3]  Zhao, Y.N., Liu, L., Li, Z., et al. (2021) Facile Fabrication of Highly Sensitive and Durable Cotton Fabric-Based Pressure Sensors for Motion and Pulse Monitoring. Journal of Materials Chemistry C, 9, 12605-12614.
https://doi.org/10.1039/D1TC02251B
[4]  Choi, S., Yoon, K., Lee, S., et al. (2019) Conductive Hierarchical Hairy Fibers for Highly Sensitive, Stretchable, and Water-Resistant Multimodal Gesture-Distinguishable Sensor, VR Applications. Advanced Functional Materials, 29, e1905808.
https://doi.org/10.1002/adfm.201905808
[5]  Sakhuja, N., Kumar, R., Katare, P. and Bhat, N. (2022) Structure-Driven, Flexible, Multilayered, Paper-Based PressureSensor for Human—Machine Interfacing. ACS Sustainable Chemistry & Engineering, 10, 9697-9706.
https://doi.org/10.1021/acssuschemeng.1c08491
[6]  Xu, Y.D., Sun, B.H., Ling, Y., et al. (2020) Multiscale Porous Elastomer Substrates for Multifunctional On-Skin Electronics with Passive-Cooling Capabilities. Proceedings of the National Academy of Sciences of the United States of America, 117, 205-213.
https://doi.org/10.1073/pnas.1917762116
[7]  Yang, J., Li, H., Cheng, J.L., et al. (2021) Nanocellulose Intercalation to Boost the Performance of MXene Pressure Sensor for Human Interactive Monitoring. Journal of Materials Science, 56, 13859-13873.
https://doi.org/10.1007/s10853-021-05909-y
[8]  Li, L., Fu, X.Y., Chen, S., et al. (2020) Hydrophobic and Stable MXene-Polymer Pressure Sensors for Wearable Electronics. ACS Applied Materials & Interfaces, 12, 15362-15369.
https://doi.org/10.1021/acsami.0c00255
[9]  Shu, J., Gao, L., Li, Y., et al. (2022) MXene/Tissue Paper Composites for Wearable Pressure Sensors and Thermothe-Rapy Electronics. Thin Solid Films, 743, Article ID: 139054.
https://doi.org/10.1016/j.tsf.2021.139054
[10]  Tan, Y.S., Ivanov, K., Mei, Z.Y., et al. (2021) A Soft Wearable and Fully-Textile Piezoresistive Sensor for Plantar Pressure Capturing. Micromachines, 12, Article 110.
https://doi.org/10.3390/mi12020110
[11]  Chang, T.H., Tian, Y., Li, C.S., et al. (2019) Stretchable Graphene Pressure Sensors with Shar-Pei-Like Hierarchical Wrinkles for Collision-Aware Surgical Robotics. ACS Applied Materials & Interfaces, 11, 10226-10236.
https://doi.org/10.1021/acsami.9b00166
[12]  Guo, Y., Guo, Z.Y., Zhong, M.J., et al. (2018) A Flexible Wearable Pressure Sensor with Bioinspired Microcrack and Interlocking for Full-Range Human-Machine Interfacing. Small, 14, e1803018.
https://doi.org/10.1002/smll.201803018
[13]  Wang, F.X., Wang, M.J., Liu, H.C., et al. (2020) Multifunctional Self-Powered E-Skin with Tactile Sensing and Visual Warning for Detecting Robot Safety. Advanced Materials Interfaces, 7, e2000536.
https://doi.org/10.1002/admi.202000536
[14]  Xu, F., Li, X., Shi, Y., et al. (2018) Recent Developments for Flexible Pressure Sensors: A Review. Micromachines, 9, Article 580.
https://doi.org/10.3390/mi9110580
[15]  Shi, J., Wang, L., Dai, Z., et al. (2018) Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range. Nano Micro Small, 14, Article ID: 1800819.
https://doi.org/10.1002/smll.201800819
[16]  Tai, H., Chen, B., Liu, Y., et al. (2022) Submillimeter-Scaled PEDOT: PSS/PPy Piezoresistive Pressure Sensor Array and Its Applications in Biomedicine. IEEE Sensors Journal, 22, 6418-6425.
https://doi.org/10.1109/JSEN.2022.3153002
[17]  郭茹月, 鲍艳. 二维导电材料/柔性聚合物复合材料基可穿戴压阻式应变传感器的研究进[J]. 精细化工, 2021, 38(4): 649-661, 859.
[18]  Badre, C., Marquant, L., Alsayed, A.M., et al. (2012) Highly Conductive Poly(3,4-Ethylenedioxythiophene):Poly(Sty- renesulfonate) Films Using 1-Ethyl-3-Methylimidazolium Tetracyanoborate Ionic Liquid. Advanced Functional Materials, 22, 2723-2727.
https://doi.org/10.1002/adfm.201200225
[19]  Kim, N., Kee, S., Lee, S.H., et al. (2014) Highly Conductive PEDOT:PSS Nanofibrils Induced by Solution-Processed Crystallization. Advanced Materials, 26, 2268-2272.
https://doi.org/10.1002/adma.201304611
[20]  Lee, S.H., Park, H., Son, W., et al. (2014) Novel Solution-Processable, Dedoped Semiconductors for Application in Thermoelectric Devices. Journal of Materials Chemistry A, 2, 13380-3387.
https://doi.org/10.1039/C4TA01839G
[21]  Mengistie, D.A., Wang, P.C. and Chu, C.W. (2013) Highly Conductive PEDOT:PSS Electrode Treated with Polyethylene Glycol for ITO-Free Polymer Solar Cells. ECS Transactions, 58, 49-56.
https://doi.org/10.1149/05811.0049ecst
[22]  Wichiansee, W. and Sirivat, A. (2009) Electrorheological Properties of Poly(Dimethylsiloxane) and Poly(3,4-Ethylene- dioxy Thiophene)/Poly(Stylene Sulfonic Acid)/Ethylene Glycol Blends. Materials Science and Engineering: C, 29, 78-84.
https://doi.org/10.1016/j.msec.2008.05.018
[23]  Cai, G., Darmawan, P., Cui, M., et al. (2016) Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors. Advanced Energy Materials, 6, Article ID: 1501882.
https://doi.org/10.1002/aenm.201501882
[24]  Hong, W., Xu, Y., Lu, G., et al. (2008) Transparent Graphene/PEDOT-PSS Composite Films as Counter Electrodes of Dye-Sensitized Solar Cells. Electrochemistry Communications, 10, 1555-1558.
https://doi.org/10.1016/j.elecom.2008.08.007
[25]  Liu, Y., Feng, J., Ou, X., et al. (2016) Ultrasmooth, Highly Conductive and Transparent PEDOT:PSS/Silver Nanowire Composite Electrode for Flexible Organic Light-Emitting Devices. Organic Electronics, 31, 247-252.
https://doi.org/10.1016/j.orgel.2016.01.014
[26]  Liu, Z., Parvez, K., Li, R., et al. (2015) Transparent Conductive Electrodes from Graphene/PEDOT:PSS Hybrid Inks for Ultrathin Organic Photodetectors. Advanced Materials, 27, 669-675.
https://doi.org/10.1002/adma.201403826
[27]  Hokazono, M., Anno, H., Toshima, N., et al. (2014) Thermoelectric Properties and Thermal Stability of PEDOT:PSS Films on a Polyimide Substrate and Application in Flexible Energy Conversion Devices. Journal of Electronic Materials, 43, 2196-2201.
https://doi.org/10.1007/s11664-014-3003-y
[28]  Ricohermoso, E., Rosenburg, F., Klug, F., et al. (2021) Piezoresistive Carbon-Containing Ceramic Nanocomposites—A Review. Open Ceramics, 5, Article ID: 100057.
https://doi.org/10.1016/j.oceram.2021.100057
[29]  Tang, Z.H., Li, Y.Q., Huang, P., et al. (2021) Comprehensive Evaluation of the Piezoresistive Behavior of Carbon Nanotube-Based Composite Strain Sensors. Compos. Composites Science and Technology, 208, Article ID: 108761.
https://doi.org/10.1016/j.compscitech.2021.108761
[30]  Li, W., Dong, W., Shen, L., et al. (2020) Conductivity and Piezoresistivity of Nano-Carbon Black (NCB) Enhanced Functional Cement-Based Sensors Using Polypropylene Fibres. Materials Letters, 270, Article ID: 127736.
https://doi.org/10.1016/j.matlet.2020.127736
[31]  Khalifa, M., Wuzella, G., Lammer, H., et al. (2020) Smart Paper From Graphene Coated Cellulose for High-Performance Humidity and Piezoresistive Force Sensor. Synthetic Metals, 266, Article ID: 116420.
https://doi.org/10.1016/j.synthmet.2020.116420
[32]  Zheng, Q., Lee, J.H., Shen, X., et al. (2020) Graphene-Based Wearable Piezoresistive Physical Sensors. Materials Today, 36, 158-179.
https://doi.org/10.1016/j.mattod.2019.12.004
[33]  Yang, C., Gu, H., Lin, W., et al. (2011) Silver Nanowires: From Scalable Synthesis to Recyclable Foldable Electronics. Advanced Materials, 23, 3052-3056.
https://doi.org/10.1002/adma.201100530
[34]  Ma, Y., Yue, Y., Zhang, H., et al. (2018) 3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor. ACS Nano, 12, 3209-3216.
https://doi.org/10.1021/acsnano.7b06909
[35]  Zhang, H., Liu, N., Shi, Y., et al. (2016) Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs. ACS Applied Materials & Interfaces, 8, 22374-22381.
https://doi.org/10.1021/acsami.6b04971
[36]  Wang, J.C., Rajat, S.K., Lu, Y.J., et al. (2019) Miniaturized Flexible Piezoresistive Pressure Sensors: Poly(3,4-Ethylen- edioxythiophene):Poly(Styrenesulfonate) Copolymers Blended with Graphene Oxide for Biomedical Applications. ACS Applied Materials & Interfaces, 11, 34305-34315.
https://doi.org/10.1021/acsami.9b10575
[37]  Gao, X.Z., Gao, F.L., Liu, J., et al. (2022) Self-Powered Resilient Porous Sensors with Thermoelectric Poly(3,4-Ethy- lenedioxythiophene):Poly(Styrenesulfonate) and Carbon Nanotubes for Sensitive Temperature and Pressure Dual- Mode Sensing. ACS Applied Materials & Interfaces, 14, 43783-43791.
https://doi.org/10.1021/acsami.2c12892
[38]  Zhao, X., Wang, W.L., Wang, Z., et al. (2020) Flexible PEDOT:PSS/Polyimide Aerogels with Linearly Responsive and Stableproperties for Piezoresistive Sensor Applications. Chemical Engineering Journal, 395, Article ID: 125115.
https://doi.org/10.1016/j.cej.2020.125115
[39]  Wang, J.N., Yue, X.Y., Li, X.T., et al. (2022) Lightweight and Elastic Silver Nanowire/PEDOT:PSS/Polyimide Aerogels for Piezoresistive Sensors. ACS Applied Polymer Materials, 4, 3205-3216.
https://doi.org/10.1021/acsapm.1c01765
[40]  Liu, N., Fang, G.J., Wan, J.W., et al. (2011) Electrospun PEDOT: PSS-PVA Nano?ber Based Ultrahigh-Strain Sensors with Controllable Electrical Conductivity. Materials Chemistry, 21, 18962-18966.
https://doi.org/10.1039/c1jm14491j
[41]  Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., Shi, Y., Dauskardt, R. and Bao, Z. (2014) An Ultra-Sensitive Resistive Pressure Sensor Based on Hollow-Sphere Microstructure Induced Elasticity in Conducting Polymer Film. Nature Communications, 5, Article No. 3002.
https://doi.org/10.1038/ncomms4002
[42]  Gong, S., Schwalb, W., Wang, Y., Chen, Y., Tang, Y., Si, J., Shirinzadeh, B. and Cheng, W. (2014) A Wearable and Highly Sensitive Pressure Sensor with Ultrathin Gold Nanowires. Nature Communications, 5, Article No. 3132.
https://doi.org/10.1038/ncomms4132
[43]  Wang, Z.R., Wang, S., Zeng, J.F., et al. (2016) High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications In Body Motion Sensing. Small, 12, 3827-3836.
https://doi.org/10.1002/smll.201601419
[44]  Zhang, M.Y., Yang, W.K., Wang, Z.Q., et al. (2023) Highly Compressible and Thermal Insulative Conductive MXene/PEDOT:PSS@Melamine Foam for Promising Wearable Piezoresistive Sensor. Applied Physics Letters, 122, Article ID: 043507.
https://doi.org/10.1063/5.0137571
[45]  Varij, P. and Gopinathan, A. (2021) Flexible Piezoresistive Strain Sensor Based on Optimized Elastomer-Electronic Polymer Blend. Measurement, 168, Article ID: 108406.
https://doi.org/10.1016/j.measurement.2020.108406
[46]  Li, H.B., Luo, R.B., Hu, J.B., et al. (2023) Self-Assembled Gel-Assisted Preparation of High-Performance Hydrophobic PDMS@MWCNTs/PEDOT: PSS Composite Aerogels for Wearable Piezoresistive Sensors. Journal of Materials Science & Technology, 182, 22-32.
https://doi.org/10.1016/j.jmst.2023.09.037
[47]  Verpoorten, E., Massaglia, G., Ciardelli, G., et al. (2020) Design and Optimization of PiezoresistivePEO/PEDOT:PSS Electrospun Nanofibers for Wearable Flex Sensors. Nanomaterials, 10, Article 2166.
https://doi.org/10.3390/nano10112166
[48]  Xia, Y., Cui, Y., Huang, P., et al. (2022) Highly Conductive Film of PEDOT:PSS Treated with Cosolvent of Formamide and Methanol for Flexible Piezoresistive Sensor Applications. Applied Physics Letters, 120, Article ID: 203302.
https://doi.org/10.1063/5.0088913

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133