全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

磷渣基碱激发胶凝材料抗压性能研究
Research on Compressive Performance of Phosphate Slag Based Alkali Activated Cementitious Materials

DOI: 10.12677/HJCE.2024.132023, PP. 200-207

Keywords: 磷渣,矿渣,碱激发,抗压强度,工作性能
Phosphorus Slag
, Slag, Alkali Activation, Compressive Strength, Workability

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了不同矿渣含量对磷渣基碱激发胶凝材料的抗压强度和工作性能的影响。其中,矿渣掺入量为0%、10%、20%、30%、40%和50%,碱激发剂为1.3M水玻璃溶液,碱当量为5%,经过3天、7天和28天养护。发现掺入矿渣能生成更多的C-(A)-S-H,大幅提升碱激发磷渣基胶凝材料的抗压强度,在相同的碱性条件下矿渣能解聚出满足缩聚反应浓度的Si-O键和Al-O键和大量Ca离子,从而在更短的时间内完成缩聚反应,缩短凝结时间和降低流动性。
This article investigates the influence of different slag contents on the compressive strength and workability of phosphorus slag based alkali activated cementitious materials. Among them, the amount of slag added is 0%, 10%, 20%, 30%, 40%, and 50%, the alkaline activator is 1.3M water glass solution, the alkali equivalent is 5%, and it is cured for 3, 7, and 28 days. It was found that adding slag can generate more C-(A)-S-H, significantly improving the compressive strength of alkali activated phosphorus slag based cementitious materials. Under the same alkaline conditions, slag can depolymerize Si-O bonds and Al-O bonds that meet the concentration of condensation reaction, as well as a large amount of Ca2+, thus completing the condensation reaction in a shorter time, reducing the setting time and fluidity.

References

[1]  陈士堃. 偏高岭土基地聚物混凝土力学性能及微观机理研究[D]: [博士学位论文]. 杭州: 浙江大学, 2019.
[2]  Mejeoumov, G.G. (2007) Improved Cement Quality and Grinding Efficiency by Means of Closed Mill Circuit Modeling. Texas A&M University, College Station.
[3]  Sun, Z. and Vollpracht, A. (2018) Isothermal Calorimetry and in-Situ XRD Study of the NaOH Activated Fly Ash, Metakaolin and Slag. Cement and Concrete Research, 103, 110-122.
https://doi.org/10.1016/j.cemconres.2017.10.004
[4]  Chen, L., Wang, Z., Wang, Y., et al. (2016) Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer. Materials, 9, Article 767.
https://doi.org/10.3390/ma9090767
[5]  Song, B., Hu, X., Liu, S., et al. (2022) Chloride Binding of Early CO2-Cured Portland Cement-Fly Ash-GGBS Ternary Pastes. Cement and Concrete Composites, 134, Article 104793.
https://doi.org/10.1016/j.cemconcomp.2022.104793
[6]  Zhuang, S. and Wang Q. (2021) Inhibition Mechanisms of Steel Slag on the Early-Age Hydration of Cement. Cement and Concrete Research, 140, Article 106283.
https://doi.org/10.1016/j.cemconres.2020.106283
[7]  Bharadwaj, K., Ghantous, R.M., Sahan, F., et al. (2021) Predicting Pore Volume, Compressive Strength, Pore Connectivity, and Formation Factor in Cementitious Pastes Containing Fly Ash. Cement and Concrete Composites, 122, Article 104113.
https://doi.org/10.1016/j.cemconcomp.2021.104113
[8]  Liu, Z., Wang, J., Jiang, Q., et al. (2019) A Green Route to Sustainable Alkali-Activated Materials by Heat and Chemical Activation of Lithium Slag. Journal of Cleaner Production, 225, 1184-1193.
https://doi.org/10.1016/j.jclepro.2019.04.018
[9]  He, X., Ye, Q., Yang, J., et al. (2018) Physico-Chemical Characteristics of Wet-Milled Ultrafine-Granulated Phosphorus Slag as a Supplementary Cementitious Material. Journal of Wuhan University of Technology-Materials Science Edition, 33, 625-633.
https://doi.org/10.1007/s11595-018-1870-4
[10]  Liu, X., Yang, L. and Zhang, B. (2013) Utilization of Phosphorus Slag and Fly Ash for the Preparation of Ready-Mixed Mortar. Applied Mechanics and Materials, 423-426, 987-992.
https://doi.org/10.4028/www.scientific.net/AMM.423-426.987
[11]  Allahverdi, A., Pilehvar, S. and Mahinroosta, M. (2016) Influence of Curing Conditions on the Mechanical and Physical Properties of Chemically-Activated Phosphorous Slag Cement. Powder Technology, 288, 132-139.
https://doi.org/10.1016/j.powtec.2015.10.053
[12]  He, Z.-H., Li, L.-Y. and Du, S.-G. (2017) Mechanical Properties, Drying Shrinkage, and Creep of Concrete Containing Lithium Slag. Construction and Building Materials, 147, 296-304.
https://doi.org/10.1016/j.conbuildmat.2017.04.166
[13]  Alvarez, J.L., Geddes, R., ERice, J., Gesell, T.F. and Wells, D. (2002) Elemental Phosphorus Slag Exposure Study in Southeastern Idaho, USA. International Congress Series, 1225, 131-138.
https://doi.org/10.1016/S0531-5131(01)00550-7
[14]  Hu, J. (2017) Comparison between the Effects of Superfine Steel Slag and Superfine Phosphorus Slag on the Long-Term Performances and Durability of Concrete. Journal of Thermal Analysis and Calorimetry, 128, 1251-1263.
https://doi.org/10.1007/s10973-017-6107-9
[15]  Shi, C. and Li, Y. (1989) Investigation on Some Factors Affecting the Characteristics of Alkaliphosphorus Slag. Cement and Concrete Research, 19, 527-533.
https://doi.org/10.1016/0008-8846(89)90004-5
[16]  Gao, P., Lu, X., Yang, C., et al. (2008) Microstructure and Pore Structure of Concrete Mixed with Superfine Phosphorous Slag and Superplasticizer. Construction and Building Materials, 22, 837-840.
https://doi.org/10.1016/j.conbuildmat.2006.12.015
[17]  Huang, Y., Chen, G., Yang, R., et al. (2023) Hydration Kinetics and Microstructure Development of Ultra-High Performance Concrete (UHPC) by High Volume of Phosphorus Slag Powder. Cement and Concrete Composites, 138, Article 104978.
https://doi.org/10.1016/j.cemconcomp.2023.104978
[18]  GB/T 17671-1999. 水泥胶砂强度检验方法(ISO法) [S].
[19]  GB/T1346-2011. 水泥标准稠度用水量、凝结时间、安定性检验方法[S].
[20]  GB/T1346-2011. 水泥标准稠度用水量、凝结时间、安定性检验方法[S].
[21]  Zhang, Y., Yang, D. and Wang, Q. (2023) Performance Study of Alkali-Activated Phosphate Slag-Granulated Blast Furnace Slag Composites: Effect of the Granulated Blast Furnace Slag Content. Archives of Civil and Mechanical Engineering, 23, Article No. 181.
https://doi.org/10.1007/s43452-023-00724-5
[22]  Lee, W.K.W. and Van Deventer, J.S.J. (2002) The Effect of Ionic Contaminants on the Early-Age Properties of Alkali-Activated Fly Ash-Based Cements. Cement and Concrete Research, 32, 577-584.
https://doi.org/10.1016/S0008-8846(01)00724-4

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413