Objective: COVID-19 surveillance was established as early as March 2020 in the
Central African Republic (CAR), after the WHO statement relating to the
identification of several cases outside China. However, given the
non-performing molecular biology technical platform in many developing
countries in sub-Saharan Africa, the second wave promised to be surprising and
formidable. In this context, a mass survey was launched in Bangui to determine
the prevalence of COVID-19. Patients and Methods: From March 18 to April
2, 2021, a mass screening campaign took place in tourist places, companies and
the main hospital infrastructures. Nasopharyngeal swab samples were collected
from participants with and without symptoms of Influenza-like illness (ILI) and
stored in VTM tubes. The Ag (COVID-19) and RT-PCR tests were carried out in Bangui at the LNBCSP. The
sequencing of RT-PCR SARS-CoV-2 positives was carried out at the INRB. Results: We included 1480 participants of whom 33 (2.23%) were SARS-COV-2 positive,
of whom 24 were male and 9 female. This sex difference was statistically
significant (p = 0.012) as the sex ratio M/F was 1.09. Sampling sites located
in the 1st arrondissement were the most prolific (p = 0.006) and were
sequenced. In addition to the analysis of the 33 samples from the predefined
sites under study, 17 control sequences from the provinces generated during the
same period are added. We detected 2 Variants Of Concern (VOC) including the
predominant B.1.620 (43.86%) followed by B.1.1.7 or Alpha (5.10%). Conclusion:
References
[1]
WHO (2021) COVID-19 Weekly Epidemiological Update. https://www.who.int/publications/m/item/covid-19-weekly-epidemiological-update
[2]
Desvaux, É. and Faucher, J.F. (2020) Covid-19: Aspects cliniques et principaux éléments de prise en charge. Revue Francophone des Laboratoires, 2020, 40-47. https://doi.org/10.1016/S1773-035X(20)30312-9
[3]
Djidjou-Demasse, R., Selinger, C. and Sofonea, M.T. (2020) É pidémiologie mathématique et modélisation de la pandémie de Covid-19: Enjeux et diversité. Revue Francophone des Laboratoires, 2020, 63-69. https://doi.org/10.1016/S1773-035X(20)30315-4
[4]
Diemer, A. (2020) Modéliser le COVID 19 Défis et perspectives. Revue francophone du développement durable, 15, 1-71.
[5]
Les, V. and Sant, T.D.E. (2021) Revue rapide sur les tests antigéniques automatisés de détection du SARS-CoV-2 sur prélèvement nasopharyngé. https://www.has.sante.fr
[6]
(2021) Covid-19: Quels prélèvements pour quels tests? Bulletin de L’Académie Nationale de Médecine, 205, 435-438. https://doi.org/10.1016/j.banm.2021.02.023
[7]
Friedberga, B., Royoa, J., Villieza, V., Daynieza, N. and Coudeneb, P. (2021) Réflexions sur la place du test antigénique Covid-19 à partir d’un résultat discordant. Revue Francophone des Laboratoires, 2021, 67-69. https://doi.org/10.1016/S1773-035X(21)00110-6
[8]
World Health Organization (2022) COVID-19 Weekly Epidemiological Update. https://www.who.int/publications/m/item/covid-19-weekly-epidemiological-update
[9]
World Health Organization (2021) COVID-19 Weekly Epidemiological Update. https://www.who.int/publications/m/item/covid-19-weekly-epidemiological-update
[10]
Bertholom, C. (2021) É volution génétique du Sars-CoV-2 et ses conséquences. Option/Bio, 32, 22-23. https://doi.org/10.1016/S0992-5945(21)00197-5
[11]
Dudas, G., Hong, S.L., Potter, B.I., Calvignac-Spencer, S., Niatou-Singa, F.S., Tombolomako, T.B., et al. (2021) Emergence and Spread of SARS-CoV-2 Lineage B.1.620 with Variant of Concern-Like Mutations and Deletions. Nature Communications, 12, Article No. 5769. https://doi.org/10.1038/s41467-021-26055-8
[12]
(2022) Covid-19, Un avenir toujours incertain qui invite à surtout ne pas baisser les bras. Bulletin de L’Académie Nationale de Médecine, 206, 919-920. https://doi.org/10.1016/j.banm.2022.07.027
Rafaï, C.D., Somse, P., Nambei, W.S., Lango-yaya, E., Belizaire, M, roseline, D., Vickos, U., et al. (2023) Contribution of Automated Antigen Tests, The LumiraDx Ag Test in the Response during the Second Wave of the COVID-19 Pandemic in Bangui. Journal of Tuberculosis Research, 1, 173-183. https://doi.org/10.4236/jtr.2023.114017
[15]
Rafaï, C.D., Heredeibona, L.S., Lango-Yaya, E., Belizaire, R.D., Senzongo, O., Mbala, P., et al. (2023) Five Successive Waves of SARS-CoV-2 Infection in the Central African Republic: A Prospective Observational Study from 2020. The Pan African Medical Journal, 46, Article 120.
[16]
Vickos, U., Camasta, M., Grandi, N., Scognamiglio, S., Schindler, T., Roseline, M., et al. (2023) COVID 19 Genomic Surveillance in Bangui (Central African Republic) Reveals a Landscape of Circulating Variants Linked to Validated Antiviral Targets of SARS-CoV-2 Proteome. Viruses, 15, Article 2309. https://doi.org/10.3390/v15122309
[17]
Fokam, J., Essomba, R.G., Njouom, R., Okomo, M.C.A., Eyangoh, S., Godwe, C., et al. (2023) Genomic Surveillance of SARS-CoV-2 Reveals Highest Severity and Mortality of Delta over Other Variants: Evidence from Cameroon. Scientific Reports, 13, Article No. 21654. https://doi.org/10.1038/s41598-023-48773-3
[18]
Ntagereka, P.B., Oyola, S.O., Baenyi, S.P., Rono, G.K., Birindwa, A.B., Shukuru, D.W., et al. (2022) Wholegenome Sequencing of SARS-CoV-2 Reveals Diverse Mutations in Circulating α and Delta Variants during the First, Second, and Third Waves of COVID-19 in South Kivu, East of the Democratic Republic of the Congo. International Journal of Infectious Diseases, 122, 136-143. https://doi.org/10.1016/j.ijid.2022.05.041
[19]
Lango-Yaya, E., Béni, R.D., N’yetobouko, S., Koyaweda, W.G. and Rafaï, C.D. (2020) Epidemiological and Profile of Covid-19 at the National Laboratory of Clinical Biology and Public Health of Bangui, Central African Republic: Cross-Sectional Study from April to July 2020. Global Science Research Journals, 8, 581-590.
[20]
Massamba, B., Assane, S., Rokhaya, D., Dalahata, B. and Mamadou, C. (2023) Infection à Covid-19 en gériatrie au Sénégal. NPG Neurologie—Psychiatrie—Gériatrie, 24, 51-59. https://doi.org/10.1016/j.npg.2023.05.005
[21]
Rafaï, C.D., Nambei, W.S., Lango-yaya, E., Simaleko, M.M., Komas, N.P., Belizaire, M., Roseline, D., et al. (2022) Biological Monitoring Parameters of Patients with Covid-19 in the Central African Republic during the First Two Waves. Annales de l’Université de Bangui, 8, 12-16.
[22]
Manirakiza, A., Malaka, C., Mossoro-Kpinde, H.D., Yambiyo, B.M., Mossoro-Kpinde, C.D., Fandema, E., et al. (2023) Seroprevalence of Anti-SARS-CoV-2 Antibodies before and after Implementation of Anti-COVID-19 Vaccination among Hospital Staff in Bangui, Central African Republic. PLOS Global Public Health, 3, e0001497. https://doi.org/10.1371/journal.pgph.0001497
[23]
Hantz, S. (2020) Diagnostic biologique de l’infection à Sars-CoV-2: Stratégies et interprétation des résultats. Revue Francophone des Laboratoires, 2020, 48-56. https://doi.org/10.1016/S1773-035X(20)30313-0
[24]
Mbow, M., Badara Dieye, P.A., Khady Ba, N., Cisse, M., Lo, G., Gningue, M., et al. (2021) Evaluation an Immunofluorescence-Based Antigen Test for Hospital Point-of-Care Diagnosis of SARS-CoV-2 Infection. Clinical Microbiology and Infection, 6, 1-4. https://doi.org/10.15761/CMID.1000192
[25]
Manirakiza, A., Malaka, C., Yambiyo, B.M., Diemer, H.S.C., De Dieu Longo, J., Namseneï, J., et al. (2021) Very High Relative Seroprevalence of Anti-SARS-CoV-2 Antibodies among Communities in Bangui, Central African Republic. https://doi.org/10.1101/2021.11.18.21266496
[26]
Chippaux, J. (2023) Impact of COVID-19 on Public Health in Sub-Saharan Africa. Bulletin de L’Académie Nationale de Médecine, 207, 150-164. https://doi.org/10.1016/j.banm.2022.10.015
[27]
(2021) Infection à VIH et Vaccination Anti-SARS-Cov2. Bulletin de L’Académie Nationale de Médecine, 205, 323-324. https://doi.org/10.1016/j.banm.2021.02.014
[28]
Tegally, H., San, J.E., Cotten, M., Moir, M., Tegomoh, B., Mboowa, G., et al. (2022) The Evolving SARS-CoV-2 Epidemic in Africa: Insights from Rapidly Expanding Genomic Surveillance. Science, 378, eabq5358.