全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于节点相似性的时序网络节点重要性识别算法
Node Importance Identification Algorithm for Temporal Networks Based on Node Similarity

DOI: 10.12677/ORF.2024.141055, PP. 590-598

Keywords: 时序网络,节点重要性识别,节点相似性,时序距离
Temporal Networks
, Identification of Important Nodes, Node Similarity, Temporal Distance

Full-Text   Cite this paper   Add to My Lib

Abstract:

时序网络可以更加准确地描述网络节点之间的交互顺序。本文提出基于节点相似性的时序路径聚集方法识别时序网络节点重要性,具体思想是在聚集时序路径的邻居信息评估目标节点重要性时,与目标节点相似性越高的邻居节点具有更高的影响力。同时,通过引入衰减因子区分不同时序路径长度邻居的信息权重,融合节点相似性系数和衰减因子构建基于节点相似性的时间信息聚集模型度量目标节点的重要性。在两个实证网络数据集上的实验结果显示相比于经典的方法,本文方法的肯德尔相关系数最高提高13.85%。该结果表明节点相似性系数的引入能够有效邻居信息来评估时序网络节点重要性。
Temporal networks can more accurately describe the interaction order between network nodes. In this paper, we propose a node similarity-based temporal path aggregation method to identify the importance of temporal network nodes, the specific idea is that when aggregating the neighbor information of temporal paths to assess the importance of the target node, the neighbor nodes with higher similarity to the target node have higher influence. At the same time, by introducing attenuation factors to distinguish the information weights of neighbors with different temporal path lengths, the node similarity coefficient and attenuation factors are fused to construct a node similarity-based temporal information aggregation model to measure the importance of target nodes. The experimental results on two empirical network datasets show that the Kendall correlation coefficient of this paper’s method is improved by up to 13.85% compared with the classical method. This result indicates that the introduction of node similarity factor can effectively neighbor information to assess the importance of temporal network nodes.

References

[1]  Holme, P. and Saram?ki, J. (2012) Temporal Networks. Physics Reports, 519, 97-125.
https://doi.org/10.1016/j.physrep.2012.03.001
[2]  Freeman, L.C. (1978) Centrality in Social Networks Conceptual Clarification. Social Networks, 1, 215-239.
https://doi.org/10.1016/0378-8733(78)90021-7
[3]  Bonacich, P. (1972) Factoring and Weighting Approaches to Status Scores and Clique Identification. Journal of Mathematical Sociology, 2, 113-120.
https://doi.org/10.1080/0022250X.1972.9989806
[4]  Chen, Y., Guo, Q., Liu, M., et al. (2022) Improved Gravity Model for Identifying The Influential Nodes. Europhysics Letters, 136, 68004.
https://doi.org/10.1209/0295-5075/ac49d1
[5]  Ou, Y., Guo, Q., Xing, J.L., et al. (2022) Identification of Spreading Influence Nodes via Multi-Level Structural Attributes Based on the Graph Convolutional Network. Expert Systems with Applications, 203, 117515.
https://doi.org/10.1016/j.eswa.2022.117515
[6]  Ou, Y., Guo, Q. And Liu, J.G. (2022) Identifying Spreading Influence Nodes for Social Networks. Frontiers of Engineering Management, 520-549.
https://doi.org/10.1007/s42524-022-0190-8
[7]  Zhang, Y.Q., Cui, J., Zhang, S.M., et al. (2016) Modelling Temporal Networks of Human Face-To-Face Contacts with Public Activity and Individual Reachability. The Eu-ropean Physical Journal B, 89, 1-8.
https://doi.org/10.1140/epjb/e2015-60651-x
[8]  Tang, J., Musolesi, M., Mascolo, C., et al. (2009) Temporal Distance Metrics for Social Network Analysis. Proceedings of the 2nd ACM Workshop on Online Social Networks, Barcelona, 17 August 2009, 31-36.
https://doi.org/10.1145/1592665.1592674
[9]  Tang, J., Musolesi, M., Mascolo, C., et al. (2010) Analysing Information Flows and Key Mediators through Temporal Centrality Metrics. Proceedings of the 3rd Workshop on Social Network Systems, Paris, 13 April 2010, 1-6.
https://doi.org/10.1145/1852658.1852661
[10]  Bi, J., Jin, J., Qu, C., et al. (2021) Temporal Gravity Model for Important Node Identification in Temporal Networks. Chaos, Solitons & Fractals, 147, 110934.
https://doi.org/10.1016/j.chaos.2021.110934
[11]  Ye, Z., Zhan, X., Zhou, Y., et al. (2017) Identifying Vital Nodes on Temporal Networks: An Edge-Based K-Shell Decomposition. 2017 36th Chinese Control Conference (CCC), Dalian, 26-28 July 2017, 1402-1407.
https://doi.org/10.23919/ChiCC.2017.8027547
[12]  Taylor, D., Myers, S.A., Clauset, A., et al. (2017) Eigen-vector-Based Centrality Measures for Temporal Net-Works. Multiscale Modeling & Simulation, 15, 537-574.
https://doi.org/10.1137/16M1066142
[13]  杨剑楠, 刘建国, 郭强. 基于层间相似性的时序网络节点重要性研究[J]. 物理学报, 2018, 67(4): 279-286.
[14]  梁耀洲, 郭强, 殷冉冉, 等. 基于排名聚合的时序网络节点重要性研究[J]. 电子科技大学学报, 2020, 49(4): 519-523.
[15]  胡钢, 许丽鹏, 徐翔. 基于时序网络层间同构率动态演化的重要节点辨识[J]. 物理学报, 2021, 70(10): 355-366.
[16]  Jiang, J.L., Fang, H., Li, S.Q., et al. (2022) Identifying Important Nodes for Temporal Networks Based on the ASAM Model. Physica A, 586, 126455.
https://doi.org/10.1016/j.physa.2021.126455
[17]  Qu, C., Zhan, X., Wang, G., et al. (2019)Temporal Infor-mation Gathering Process For Node Ranking in Time-Varying Networks. Chaos, 29, 033116.
https://doi.org/10.1063/1.5086059
[18]  Tang, J., Scellato, S., Musolesi, M., et al. (2010) Small-World Behavior in Time-Varying Graphs. Physical Review E, 81, 055101.
https://doi.org/10.1103/PhysRevE.81.055101
[19]  Hamers, L. (1989) Similarity Measures in Scientometric Research: The Jaccard Index Versus Salton’s cosine Formula. Information Processing and Management, 25, 315-318.
https://doi.org/10.1016/0306-4573(89)90048-4
[20]  Katz, L. (1953) A New Status Index Derived from Sociometric Analysis. Psychometrika, 18, 39-43.
https://doi.org/10.1007/BF02289026
[21]  Opsahl, T. (2013) Triadic Closure in Two-Mode Networks: Rede-fining the Global and Local Clustering Coefficients. Social Networks, 35, 159-167.
https://doi.org/10.1016/j.socnet.2011.07.001
[22]  Isella, L., Stehlé, J., Barrat, A., et al. (2011) What’s in a Crowd? Analysis of Face-To-Face Behavioral Net-Works. Journal of Theoretical Biology, 271, 166-180.
https://doi.org/10.1016/j.jtbi.2010.11.033
[23]  Iyer, S., Killingback, T., Sundaram, B., et al. (2013) Attack Robustness and Centrality of Complex Networks. PLOS ONE, 8, E59613.
https://doi.org/10.1371/journal.pone.0059613
[24]  Kendall, M.G. (1938) A New Measure of Rank Correlation. Biometrika, 30, 81-93.
https://doi.org/10.1093/biomet/30.1-2.81

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413