全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electrochemical Analysis of Zirconiumin Aqueous and Organic Media

DOI: 10.4236/ajac.2024.152006, PP. 99-118

Keywords: Zirconium, Electrochemical, Reduction, Cyclic Voltammetry, Voltammogram, Dymethylformamide

Full-Text   Cite this paper   Add to My Lib

Abstract:

For the challenging nature of the zirconium environment analysis, this study consists to analyze the electrochemical behavior of Zirconium in both aqueous and organic media. To that end first the electrolytic media was selected on the basis of the Pourbaix potential-pH diagram, which provides informations on the predominance of Zr(IV) ion and Zr in aqueous media. In aqueous media, analyzes were first carried out in acidic media then in basic media. Studies have thus revealed that the acidic environment is not favourable for the electrochemical analysis of zirconium. Voltammograms obtained in an acidic environment show no zirconium detection signal; this is due to the strong presence of H+ ions in the solution. We have also observed in acidic media the phenomenon of passivation of the electrode surface. In aqueous alkaline media (pH = 13), we have drawn in reduction several Intensity-Potential curves by fixingsome technical parameterslike scanning speed, rotation speed of the electrode. The obtained voltammograms show cathodic waves, starting from -1.5 V/DHW and attributed to the reduction of Zr (IV) to Zr (0). The last phase of this study focused on the electrochemical analysis of zirconium in an organic media. In this media, several intensity-potential curves were plotted in reduction and in cyclic voltammetry with various parameters. Through several reduction analysis, the Zr (IV) was reduced to Zr (0) to the potential of -1.5 V/DHW. The electrochemical analysis of zirconium in organic media seems globally easier to achieve thanks to its large solvent window (i.e. dimethylformamide (DMF) solvent window > 6 V).

References

[1]  DENSLEY (2015) Technical Handbook on Zirconium and Zirconium Compounds. 2nd Edition.
[2]  Xu, L., Xiao, Y., Van Sandwijk, A., Xu, Q. and Yang, Y. (2015) Production of Nuclear Grade Zirconium: A Review. Journal of Nuclear Materials, 466, 21-28.
https://doi.org/10.1016/j.jnucmat.2015.07.010
[3]  Ashcheulov, P., Skoda, R., Skarohlid, J., Taylor, A., Fendrych, F. and Kratochvílova, I. (2016) Layer Protecting the Surface of Zirconium Used in Nuclear Reactors. Recent Patents on Nanotechnology, 10, 59-65.
https://www.ingentaconnect.com
https://doi.org/10.2174/2210315506999160304132946
[4]  Yan, X. and Fray, D. (2010) Molten Salt Electrolysis for Sustainable Metal Extraction and Materials Processing.
[5]  Xi, X., et al. (2020) Applications of Molten Salt and Progress of Molten Salt Electrolysis in Secondary Metal Resource Recovery. International Journal of Minerals, Metallurgy and Materials, 27, 1599-1617.
https://doi.org/10.1007/s12613-020-2175-0
[6]  Quaranta, D., Massot, L., Gibilaro, M., Mendes, E., Serp, J. and Chamelot, P. (2018) Zirconium(IV) Electrochemical Behavior in Molten LiF-NaF. Electrochimica Acta, 265, 586-593.
https://doi.org/10.1016/j.electacta.2018.01.213
[7]  Liu, K., et al. (2017) Condition Dependence of Zr Electrochemical Reactions and Morphological Evolution of Zr Deposits in Molten Salt. Science China Chemistry, 60, 264-274.
https://doi.org/10.1007/s11426-016-0321-x
[8]  Xu, L., Xiao, Y., Xu, Q., Song, Q. and Yang, Y. (2017) Electrochemistry of Zirconium in Molten Chlorides. International Journal of Electrochemical Science, 12, 6393-6403.
https://doi.org/10.20964/2017.07.51
[9]  Hoover, R.O., Yoon, D. and Phongikaroon, S. (2016) Effects of Temperature, Concentration, and Uranium Chloride Mixture on Zirconium Electrochemical Studies in LiCl-KCl Eutectic Salt. Journal of Nuclear Materials, 476, 179-187.
https://doi.org/10.1016/j.jnucmat.2016.04.037
[10]  Xu, L., et al. (2017) Electrochemical Studies on the Redox Behavior of Zirconium in the LiF-NaF Eutectic Melt. Journal of Nuclear Materials, 488, 295-301.
https://doi.org/10.1016/j.jnucmat.2017.03.028
[11]  Murali Krishna, G., Suneesh, A.S., Venkatesan, K.A. and Antony, M.P. (2016) Electrochemical Behavior of Zirconium(IV) in 1-Butyl-3-Methylimidazolium Bis(Tri-fluoromethylsulfonyl) Imide Ionic Liquid. Journal of Electroanalytical Chemistry, 776, 120-126.
https://doi.org/10.1016/j.jelechem.2016.07.015
[12]  Gobert, E. (1994) Contribution a L’Etude du Comportement ELectrochimique du Zirconium en Milieu Aqueux: Applications Aux Depots ELectrolytiques de Metaux.
[13]  Pourbaix Diagram for Zr at 298K.
https://www.researchgate.net
[14]  Jin, G., Xu, C., Hu, S. and Zhou, X. (2020) Temperature Dependent Electrochemical Equilibrium Diagram of Zirconium-Water System Studied with Density Functional Theory and Experimental Thermodynamic Data. Journal of Nuclear Materials, 532, Article ID: 152036.
https://doi.org/10.1016/j.jnucmat.2020.152036
[15]  Bull, J.R. (2010) Pure and Applied Chemistry: Foreword. Pure and Applied Chemistry, 82, 395.
https://books.google.sn/books
https://doi.org/10.1351/pac20108204iii
[16]  Masudi, A. and Muraza, O. (2018) Zirconia-Based Nanocatalysts in Heavy Oil Upgrading: A Mini Review. Energy and Fuels, 32, 2840-2854.
https://doi.org/10.1021/acs.energyfuels.7b03264
[17]  Rotty, C. (2018) Etude de l’électropolissage d’alliages horlogers issus de fabrication additive en milieu aqueux et solvant non conventionnel. Université de Bourgogne, Bourgogne.
[18]  Belghiti, D.K. (2017) Réseaux d’électrodes en diamant fonctionnalisées par des nanoparticules à base de métaux de transition pour applications analytiques. Université pierre et marie curie-Paris VI, Paris.
[19]  Einaga, Y. (2022) Boron-Doped Diamond Electrodes: Fundamentals for Electrochemical Applications. Accounts of Chemical Research, 55, 3605-3615.
https://doi.org/10.1021/acs.accounts.2c00597
[20]  Peng, H.Y., et al. (2016) Electrochemical Properties of Boron-Doped Diamond Electrodes Prepared by Hot Cathode Direct Current Plasma CVD. Materials Science, 22, 213-217.
https://doi.org/10.5755/j01.ms.22.2.12926
[21]  Bousquet, J. (2015) Propriétés optiques et électroniques du diamant fortement dopé au bore.
[22]  Dekanski, A., Stevanović, J., Stevanović, R., Nikolić, B.Ž. and Jovanović, V.M. (2016) Glassy Carbon Electrodes: Characterization and Electrochemical Activation. Carbon, 39, 1195-1205.
https://doi.org/10.1016/S0008-6223(00)00228-1
[23]  Mund, K., Richter, G., Weidlich, E. and Fahlström, U. (2014) Electrochemical Properties of Platinum, Glassy Carbon, and Pyrographite as Stimulating Electrodes. Pacing and Clinical Electrophysiology, 9, 1225-1229.
https://doi.org/10.1111/j.1540-8159.1986.tb06699.x
[24]  Côrtes, C., Mantilla, J.C., Da Silva, S.W., Camara, G.A. and Giz, M.J. (2023) A Sensitive and Selective Platinum-Based Electrochemical Sensor for Detection of Neurotransmitters: Design and Proof of Concept. Microchemical Journal, 193, Article ID: 109017.
https://doi.org/10.1016/j.microc.2023.109017
[25]  Gao, Z., Moore, T.W., Doub, W.H., Westenberger, B.J. and Buhse, L.F. (2006) Effects of Deaeration Methods on Dissolution Testing in Aqueous Media: A Study Using a Total Dissolved Gas Pressure Meter. Journal of Pharmaceutical Sciences, 95, 1606-1613.
https://doi.org/10.1002/jps.20622
[26]  EniG. Periodic Table of the Elements, Calculators, and Printable Materials.
https://www.periodni.com
[27]  Zirconium-EniG. Tableau périodique des elements.
https://www.periodni.com/fr/zr.html
[28]  Coleman, C.E. (2022) The Metallurgy of Zirconium. Vienne.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133