全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Manufacture of Industrial Refractory Crucibles Based on Clays from Burkina Faso

DOI: 10.4236/jmmce.2024.122006, PP. 79-90

Keywords: Refractory, Foundry Activity, Compressive Strength, Chemical Resistance

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Burkina Faso, one of the three largest gold producers in West Africa, foundry activity is often paralyzed when basic equipment such as crucibles and cups are not available or should be imported. However, previous studies have shown the availability of kaolinite-rich clay resources that could be used for the local manufacture of silico-aluminous ceramic crucibles. This work allowed to manufacture industrial ceramic crucibles with local clays and then they were tested in foundry industry. The materials were manufactured from three (03) raw materials including two clays (SAB and ROU) and sand. The chemical and mineral analysis has shown that the raw materials are suitable for the formulation of refractory materials. The results of characterization of the materials formulated showed that the properties of use are appreciable. The porosity of the materials is relatively low (23 - 28 vol%) with a diametral compressive strength between 0.61 and 1.34 MPa. Crucibles sintered at 1250˚C with a stay of 2 hours have a mechanical strength capable of supporting the weight of the ores contained. These crucibles have a refractoriness under load (T0.5) above 1141˚C and resist chemical attacks. Tests were carried out in the industry at 1100˚C, and the results were satisfactory.

References

[1]  Sawadogo, M., Sanou, I., Dah, Y., Traoré, B., sawadogo, Y., Samaké, D., Dembelé, C., Zerbo, L. and Seynou, M. (2021) Résistance Aux Chocs Thermiques Etaux Attaques Chimiquesde Briques Réfractaires à Base d’argile Kaolinitique et de Sable. Journal de la Société Ouest-Africaine de Chimie, 50, 50-56.
[2]  Seynou, M., Millogo, Y., Traoré, K., Tirlocq, J. and Ouedraogo, R. (2011) Firing Transformations and Properties of Tiles from a Clay from Burkina Faso. Applied Clay Science, 51, 499-502.
https://doi.org/10.1016/j.clay.2011.01.002
[3]  Seynou, M., Flament, P., Traoré Dah, Y., Tirlocq, J. and Ouedraogo, R. (2014) Elaboration of Refractory Bricks with a Raw Clay Material from Burkina Faso. Physical Chemistry News, 71, 68-75.
[4]  Adeoti, M.O., Dahunsi, O.A., Awopetu, O.O., Aramide, F.O., Alabi, O.O., Johnson, O.T. and Abdulkarim, A.S. (2019) Suitability of Selected Nigerian Clays for Foundry Crucibles Production. Procedia Manufacturing, 35, 1316-1323.
https://doi.org/10.1016/j.promfg.2019.05.023
[5]  El Haddar, A., Manni, A., Azdimousa, A., El Amrani El Hassani, I.E., Bellil, A., Sadik, C., Fagel, N. and El Ouahabi, M. (2019) Elaboration of a High Mechanical Performance Refractory from Halloysite and Recycled Alumina. Boletín de la Sociedad Española de Cerámica y Vidrio, 59, 95-104.
https://doi.org/10.1016/j.bsecv.2019.08.002
[6]  Rat, E., Martínez-Martínez, S., Sanchez-Garrido, J.A., Villarejo, L.P., Garzon, E. and Sanchez-Soto, P.J. (2023) Characterization, Thermal and Ceramic Properties of Clays from Alhabia (Almería, Spain). Ceramics International, 49, 14814-14825.
https://doi.org/10.1016/j.ceramint.2022.05.328
[7]  Barry, K., Lecomte-Nana, G.L., Seynou, M., Faucher, M. and Blanchart, P. (2022) Comparative Properties of Porous Phyllosilicate-Based Ceramics Shaped by Freeze-Tape Casting. Ceramics, 5, 75-96.
https://doi.org/10.3390/ceramics5010007
[8]  Boussen, S., Sghaier, D., Chaabani, F., Jamoussi, B. and Bennour, A. (2016) Characteristics and Industrial Application of the Lower Cretaceous Clay Deposits (Bouhedma Formation), Southeast Tunisia: Potential Use for the Manufacturing of Ceramic Tiles and Bricks. Applied Clay Science, 123, 210-211.
https://doi.org/10.1016/j.clay.2016.01.027
[9]  Comité de pilotage de l’Initiative pour la Transparence dans les Industries Extractives du Burkina Faso 5ITIE-BF (2022) Rapport Annuel d’avancement 2021.
[10]  Qingdao Decent Group (2023) Qingdao Decent Group Unveils Innovative Containerized Sample Peparation.
[11]  Zhang, Y., Wang, K., Wang, B. and Zhang, C. (2020) Thermal Shock Resistance of Porous Ceramic Foams with Temperature-Dependent Materials Properties. Ceramics International, 46, 1503-1511.
https://doi.org/10.1016/j.ceramint.2019.09.117
[12]  Kam, S., Zerbo, L., Seynou, M., Soro, J., Traoré, K., Bathiebo, D.J., Millogo, Y., Ouédraogo, R., Gomina, M. and Blanchart, P. (2009) Céramiques d’argile Du Burkina Faso Utilisées En Construction Immobilière. Journal de la Société Ouest-Africaine de Chimie, 27, 55-62.
[13]  Sawadogo, M., Seynou, M., Zerbo, L., Sorgho Yameogo, A., Millogo, Y. and Ouédraogo, R. (2016) Densification Behaviour of Chamotte Grog for Refractory Bricks: Mineralogy and Microstructure. Journal de la Société Ouest-Africaine de Chimie, 41, 1-10.
[14]  Ekpunobi, U.E., Agbo, S.U. and Ajiwe, V.I.E. (2019) Evaluation of the Mixtures of Clay, Diatomite, and Sawdust for Production of Ceramic Pot Filters for Water Treatment Interventions Using Locally Sourced Materials. Journal of Environmental Chemical Engineering, 7, Article ID: 102791.
https://doi.org/10.1016/j.jece.2018.11.036
[15]  Rambaldi, E., Lucchese, B. and Bignozzi, M.C. (2017) Protective Treatments for Lapped Porcelain Stoneware Tiles and Evaluation of Their Cleanability. Ceramics-Silikáty, 61, 285-292.
https://doi.org/10.13168/cs.2017.0027
[16]  Sudha, P.N., Vanisri, N., Sangeetha, K., Jisha Kumari, A.V. and Rani, K. (2019) Corrosion of Ceramic Materials. Fundamental Biomaterials: Ceramics, 9, 223-250.
https://doi.org/10.1016/B978-0-08-102203-0.00009-3
[17]  (2007) Refractory Products—Determination of Refractoriness under Load—Differential Method with Rising Temperature. ISO 1893:2007.
[18]  Luz, A.P., Gomes, D.T. and Pandolfelli, V.C. (2017) Maximum Working Temperature of Refractory Castables: Do We Really Know How to Evaluate It? Ceramics International, 43, 9077-9083.
https://doi.org/10.1016/j.ceramint.2017.04.053
[19]  Samain, L., Jaworski, A., Edén, M., Ladd, D.M., Seo, D.K., Garcia-Garcia, F.J. and Häussermann, U. (2014) Structural Analysis of Highly Porous γ-Al2O3. Journal of Solid State Chemistry, 217, 1-8.
https://doi.org/10.1016/j.jssc.2014.05.004
[20]  Zemánek, D., Lang, K., Tvrdík, L., Všiansky, P., Nevrivová, L., Štursa, P., Kovár, P., Keršnerová, L. and Dvorák, K. (2021) Development and Properties of New Mullite Based Refractory Grog. Materials, 14, Article 779.
https://doi.org/10.3390/ma14040779
[21]  Martín-Márquez, J., Ma Rincón, J. and Romero, M. (2010) Mullite Development on Firing in Porcelain Stoneware Bodies. Journal of the European Ceramic Society, 30, 1599-1607.
https://doi.org/10.1016/j.jeurceramsoc.2010.01.002
[22]  Barry, K., Lecomte-Nana, G.L., Seynou, M., Faucher, M., Blanchart, P. and Peyratout, C. (2022) Properties of Phyllosilicate-Based Porous Ceramics Shaped by Conventional Tape Casting and Freeze Tape Casting. International Journal of Applied Ceramic Technology, 19, 3084-3098.
https://doi.org/10.1111/ijac.14126
[23]  Chargui, F., Belhou, H., Hamidouche, M., Jorande, Y., Douf, R. and Fantozzi, G. (2018) Mullite fabrication from natural kaolin and aluminium slagProducción de mullita a partir de caolín natural y escoria de aluminio. Boletín de la Sociedad Española de Cerámica y Vidrio, 57, 169-177.
https://doi.org/10.1016/j.bsecv.2018.01.001
[24]  Pilate, P., Lardot, V., Cambier, F. and Brochen, E. (2015) Contribution to the Understanding of the High Temperature Behavior and of the Compressive Creep Behavior of Silica Refractory Materials. Journal of the European Ceramic Society, 35, 813-822.
https://doi.org/10.1016/j.jeurceramsoc.2014.09.019
[25]  Sawadogo, M., Seynou, M., Zerbo, L., Sorgho, B., Lecomte-Nana, G.L., Blanchart, P. and Ouédraogo, R. (2020) Formulation of Clay Refractory Bricks: Influence of the Nature of Chamotte and the Alumina Content in the Clay. Advances in Materials, 9, 59-67.
https://doi.org/10.11648/j.am.20200904.11

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413