全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无线通信系统面向突发流量的时延分析
Delay Analysis of Wireless Communication Systems for Bursty Traffic

DOI: 10.12677/CSA.2024.142041, PP. 408-414

Keywords: 无线通信系统,鞅论,时延
Wireless Communication System
, Martingale Theory, Delay

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文对无线通信系统的时延和可靠性这类的问题,提出了一种解决问题的新的模型——鞅论。针对有时延可靠性要求的业务,提出单跳时延性能分析鞅框架。根据鞅的基本性质推导出对随机过程可以进行鞅构造的特性。由于实际的5G网络中存在大量突发的以及自相似的流量,本文以马尔可夫调制开关过程为例,通过对突发到达流和服务过程进行鞅构造,得出时延违反概率和时延之间的关系。对突发到达流和服务过程分别进行了基于鞅论和基于有效带宽/容量理论的实验。仿真结果表明,对于突发到达流来说,采用鞅构造对比采用传统的有效带宽/容量理论而言得到的时延违反概率更加紧致。
This paper proposes a new model to solve the problems of delay and reliability in wireless commu-nication systems, known as martingale theory. For reliability-aware applications with delay requirements, a single-hop delay performance analysis reinforcement learning framework is pro-posed. The basic properties of martingales are used to derive the characteristics of martingale construction for random processes. Considering the existence of large amounts of bursty and self-similar traffic in actual 5G networks, this paper takes the Markov-modulated switching process as an example, and martingale constructions are performed on the bursty arrival process and service process to analyze the relationship between delay violation probability and delay. Experimental results based on martingale theory and effective bandwidth/capacity theory for the bursty arrival process and service process are presented. The simulation results show that compared to traditional effective bandwidth/capacity theory, the martingale construction method obtains a more compact delay violation probability for bursty arrival flows.

References

[1]  Stidham, S. (2002) Applied Probability in Operations Research: A Retrospective. Master’s Thesis, University of North Carolina, Chapel Hill.
[2]  Ciucu, F. (2007) Network Calculus Delay Bounds in Queueing Networks With Exact Solu-tions. International Teletraffic Conference on Managing Traffic Performance in Converged Networks, Springer-Verlag, Berlin, 495-506.
[3]  Ciucu, F., Poloczek, F. and Schmitt, J. (2013) Sharp Bounds in Stochastic Network Calculus. ACM SIGMETRICS Performance Evaluation Review, 41, 367-368.
https://doi.org/10.1145/2494232.2465746
[4]  Ciucu, F., Poloczek, F. and Schmitt, J. (2014) Sharp Per-Flow De-lay Bounds for Bursty Arrivals: Thecase of FIFO, SP, and EDF Scheduling. IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, Toronto, 27 April 2014 - 2 May 2014, 1896-1904.
https://doi.org/10.1109/INFOCOM.2014.6848129
[5]  Poloczek, F. and Ciucu, F. (2014) A Martingale-Envelope and Applications. ACM SIGMETRICS Performance Evaluation Review, 41, 43-45.
https://doi.org/10.1145/2567529.2567543
[6]  Poloczek, F. and Ciucu, F. (2014) Scheduling Analysis with Mar-tingales. Performance Evaluation, 79, 56-72.
https://doi.org/10.1016/j.peva.2014.07.004
[7]  Poloczek, F. and Ciucu, F. (2015) Service-Martingales: Theory and Applications to the Delay Analysis of Random Access Protocols. 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, 26 April 2015 - 1 May 2015, 945-953.
https://doi.org/10.1109/INFOCOM.2015.7218466
[8]  Ciucu, F. and Burchard, A. (2005) A Network Service Curve Approach for the Stochastic Analysis of Networks. Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, Banff, 6 June 2005, 279-290.
https://doi.org/10.1145/1064212.1064251
[9]  Hu, Y., Li, H.Y., Chang, Z. and Han, Z. (2017) Scheduling Strate-gy for Multimedia Heterogeneous High-Speed Train Networks. IEEE Transactions on Vehicular Technology, 66, 3265-3279.
https://doi.org/10.1109/tvt.2016.2587080
[10]  Hu, Y., Li, H. and Han, Z. (2015) Heterogeneous Net-work for High-Speed Trains. 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, 1-6.
[11]  Poloczek, F., Ciucu, F. and Schmitt, J. (2014) Sharp Per-Flow Delay Bounds for Bursty Arrivals: The Case of FIFO, SP, and EDF Scheduling. IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, Toronto, 27 April 2014 - 2 May 2014, 1896-1904.
[12]  Liu, T., Li, J., Shut, F. and Han, Z. (2018) Quality-of-Service Driven Re-source Allocation Based on Martingale Theory. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, 9-13 December 2018, 1-6.
https://doi.org/10.1109/GLOCOM.2018.8647578
[13]  Zhao, L., Chi, X. and Zhu, Y. (2018) Martingales-Based Energy-Efficient D ALOHA Algorithms for MTC Networks with Delay-Insensitive/URLLC Terminals Co-Existence. IEEE Internet of Things Journal, 5, 1285-1298.
https://doi.org/10.1109/JIOT.2018.2794614
[14]  Hu, Y., Li, H., Chang, Z. and Han, Z. (2017) Scheduling Strategy for Multimedia Heterogeneous High-Speed Train Networks. IEEE Transactions on Vehicular Technology, 66, 3265-3279.
https://doi.org/10.1109/TVT.2016.2587080
[15]  Fantacci, R. and Picano, B. (2021) End-to-End Delay Bound for Wireless uVR Services over 6G Terahertz Communications. IEEE Internet of Things Journal, 8, 17090-17099.
https://doi.org/10.1109/JIOT.2021.3077497
[16]  Fantacci, R., Pecorella, T., Picano, B. and Pierucci, L. (2021) Martingale Theory Application to the Delay Analysis of a Multi-Hop Aloha NOMA Scheme in Edge Compu-ting Systems. IEEE Transactions on Communications, 29, 2834-2842.
https://doi.org/10.1109/TNET.2021.3103424

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413