全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterisation of the Bacteria and Archaea Community Associated with Wild Oysters, at Three Possible Restoration Sites in the North Sea

DOI: 10.4236/ojms.2024.142002, PP. 19-40

Keywords: Oyster Reefs, Microbiome, Marine Bacteria, Marine Archaea, Restoration

Full-Text   Cite this paper   Add to My Lib

Abstract:

With 85% of the global oyster reefs destroyed, there is an urgent need for large scale restoration to benefit from the ecosystem services provided by biogenic oyster reefs and their associated biodiversity, including microorganisms that drive marine biogeochemical cycles. This experiment established a baseline for the monitoring of the bacterial and archaeal community associated with wild oysters, using samples from their immediate environment of the Voordelta, with cohabiting Crassostrea gigas and Ostrea edulis, Duikplaats with only C. gigas attached to rocks, and the Dansk Skaldyrcentre, with no onsite oysters. The microbial profiling was carried out through DNA analysis of samples collected from the surfaces of oyster shells and their substrate, the sediment and seawater. Following 16S rRNA amplicon sequencing and bioinformatics, alpha indices implied high species abundance and diversity in sediment but low abundance in seawater. As expected, Proteobacteria, Bacteroidetes, Firmicutes and Thaumarchaeota dominated the top 20 OTUs. In the Voordelta, OTUs related to Colwellia, Shewanella and Psychrobium differentiated the oysters collected from a reef with those attached to rocks. Duikplaats were distinct for sulfur-oxidizers Sulfurimonas and sulfate-reducers from the Sva 0081 sediment group. Archaea were found mainly in sediments and the oyster associated microbiome, with greater abundance at the reef site, consisting mostly of Thaumarchaeota from the family Nitrosopumilaceae. The oyster free site displayed archaea in sediments only, and algal bloom indicator microorganisms from the Rhodobacteraceae, Flavobacteriaceae family and genus [Polaribacter] huanghezhanensis, in addition to the ascidian symbiotic partner, Synechococcus.

References

[1]  Newell, R.I.E., Cornwell, J.C. and Owens, M.S. (2002) Influence of Simulated Bivalve Bio Deposition and Microphytobenthos on Sediment Nitrogen Dynamics: A Laboratory Study. Limnology and Oceanography, 47, 1367-1379.
https://doi.org/10.4319/lo.2002.47.5.1367
[2]  Arfken, A., Song, B., Bowman, J.S. and Piehler, M. (2017) Denitrification Potential of the Eastern Oyster Microbiome Using a 16S RRNA Gene Based Metabolic Inference Approach. PLOS ONE, 12, e0185071.
https://doi.org/10.1371/journal.pone.0185071
[3]  Olsen, O.T. (1883) The Piscatorial Atlas of the North Sea, English and St. George’s Channels: Illustrating the Fishing Ports, Boats, Gear, Species of Fish (How, Where and When Caught), and Other Information Concerning Fish and Fisheries.
[4]  Lotze, H.K., Lenihan, H.S., Bourque, B.J., Bradbury, R.H., Cooke, R.G., Kay, M.C., et al. (2006) Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science, 312, 1806-1809.
https://doi.org/10.1126/science.1128035
[5]  Thurstan, R.H., Hawkins, J.P., Raby, L. and Roberts, C.M. (2013) Oyster (Ostrea edulis) Extirpation and Ecosystem Transformation in the Firth of Forth, Scotland. Journal for Nature Conservation, 21, 253-261.
https://doi.org/10.1016/j.jnc.2013.01.004
[6]  Beck, M.W., Brumbaugh, R.D., Airoldi, L., Carranza, A., Coen, L.D., Crawford, C., et al. (2011) Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management. BioScience, 61, 107-116.
https://doi.org/10.1525/bio.2011.61.2.5
[7]  Pogoda, B. (2019) Current Status of European Oyster Decline and Restoration in Germany. Humanities, 8, Article No. 9.
https://doi.org/10.3390/h8010009
[8]  Smaal, A.C., Ferreira, J.G., Grant, J., Petersen, J.K. and Strand, O. (2018) Goods and Services of Marine Bivalves. Springer, Berlin.
https://doi.org/10.1007/978-3-319-96776-9
[9]  Jordan, S.J. (1987) Sedimentation and Remineralization Associated with Biodeposition by the American Oyster Crassostrea virginica (Gmelin). Marine, Estuarine and Environmental Science. ProQuest Dissertations Publishing, College Park.
[10]  Ray, N.E. and Fulweiler, R.W. (2020) Meta-Analysis of Oyster Impacts on Coastal Biogeochemistry. Nature Sustainability, 4, 261-269.
https://doi.org/10.1038/s41893-020-00644-9
[11]  Strand, O. and Ferreira, J.G. (2019) Introduction to Regulating Services. In: Smaal, A.C., et al., Eds., Goods and Services of Marine Bivalves, Springer International Publishing, Cham, 115-117.
https://doi.org/10.1007/978-3-319-96776-9_7
[12]  Galimany, E., Rose, J., Dixon, M., Alix, R., Li, J. and Wikfors, G. (2018) Design and Use of an Apparatus for Quantifying Bivalve Suspension Feeding at Sea. Journal of Visualized Experiments, 139, e58213.
https://doi.org/10.3791/58213
[13]  Smith, J.M., Mosier, A.C. and Francis, C.A. (2015) Spatiotemporal Relationships between the Abundance, Distribution, and Potential Activities of Ammonia-Oxidizing and Denitrifying Microorganisms in Intertidal Sediment. Microbial Ecology, 69, 13-24.
https://doi.org/10.1007/s00248-014-0450-1
[14]  Stal, L.J. (2015) Nitrogen Fixation in Cyanobacteria. In: Encyclopedia of Life Sciences, John Wiley & Sons, Ltd., Hoboken, 1-9.
https://doi.org/10.1002/9780470015902.a0021159.pub2
[15]  Tritar, S., et al. (1992) Effects of Bacterial Films on the Settlement of the Oysters, Crassostrea gigas (Thunberg, 1793) and Ostrea edulis Linnaeus, 1750 and the Scallop Pecten maximus (Linnaeus, 1758). Journal of Shellfish Research, 11, 325-330.
[16]  Campbell, A.H., Meritt, D.W., Franklin, R.B., Boone, E.L., Nicely, C.T. and Brown, B.L. (2011) Effects of Age and Composition of Field-Produced Biofilms on Oyster Larval Setting. Biofouling, 27, 255-265.
https://doi.org/10.1080/08927014.2011.560384
[17]  Graziano, M.U., Graziano, K.U., Pinto, F.M.G., Bruna, C.Q.D.M., Souza, R.Q.D. and Lascala, C.A. (2013) Effectiveness of Disinfection with Alcohol 70% (W/V) of Contaminated Surfaces Not Previously Cleaned. Revista Latino-Americana de Enfermagem, 21, 618-623.
https://doi.org/10.1590/S0104-11692013000200020
[18]  Wobus, A., Bleul, C., Maassen, S., Scheerer, C., Schuppler, M., Jacobs, E., et al. (2003) Microbial Diversity and Functional Characterization of Sediment from Reservoirs of Different Trophic State. FEMS Microbiology Ecology, 46, 331-347.
https://doi.org/10.1016/S0168-6496(03)00249-6
[19]  Albertsen, M., Karst, S.M., Ziegler, A.S., Kirkegaard, R.H. and Nielsen, P.H. (2015) Back to Basics—The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated Sludge Communities. PLOS ONE, 10, e0132783.
https://doi.org/10.1371/journal.pone.0132783
[20]  Apprill, A., Mcnally, S., Parsons, R. and Weber, L. (2015) Minor Revision to V4 Region SSU RRNA 806R Gene Primer Greatly Increases Detection of SAR11 Bacterioplankton. Aquatic Microbial Ecology, 75, 129-137.
https://doi.org/10.3354/ame01753
[21]  Parada, A.E., Needham, D.M. and Fuhrman, J.A. (2016) Every Base Matters: Assessing Small Subunit RRNA Primers for Marine Microbiomes with Mock Communities, Time Series and Global Field Samples. Environmental Microbiology, 18, 1403-1414.
https://doi.org/10.1111/1462-2920.13023
[22]  Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., et al. (2010) QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nature Methods, 7, 335-336.
https://doi.org/10.1038/nmeth.f.303
[23]  Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013) The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Research, 41, D590-D596.
https://doi.org/10.1093/nar/gks1219
[24]  Legendre, P. and Gallagher, E. (2001) Ecologically Meaningful Transformations for Ordination of Species Data. Oecologia, 129, 271-280.
https://doi.org/10.1007/s004420100716
[25]  Sas, H., Kamermans, P., Van Der Have, T., Lengkeek, W. and Smaal, A.C. (2017) Shellfish Reef Restoration Pilots Voordelta the Netherlands.
[26]  Kowallik, K.V. and Martin, W.F. (2021) The Origin of Symbiogenesis: An Annotated English Translation of Mereschkowsky’s 1910 Paper on the Theory of Two Plasma Lineages. Biosystems, 199, Article ID: 104281.
https://doi.org/10.1016/j.biosystems.2020.104281
[27]  Linney, M.D., Eppley, J.M., Romano, A.E., Luo, E., De Long, E.F. and Karl, D.M. (2022) Microbial Sources of Exocellular DNA in the Ocean. Applied and Environmental Microbiology, 88, e02093-21.
https://doi.org/10.1128/aem.02093-21
[28]  Brum, J.R. (2005) Concentration, Production and Turnover of Viruses and Dissolved DNA Pools at Stun ALOHA, North Pacific Subtropical Gyre. Aquatic Microbial Ecology, 41, 103-113.
https://doi.org/10.3354/ame041103
[29]  Linney, M.D., Schvarcz, C.R., Steward, G.F., DeLong, E.F. and Karl, D.M. (2021) A Method for Characterizing Dissolved DNA and Its Application to the North Pacific Subtropical Gyre. Limnology and Oceanography: Methods, 19, 210-221.
https://doi.org/10.1002/lom3.10415
[30]  Han, Y., Jiao, N., Zhang, Y., Zhang, F., He, C., Liang, X., et al. (2021) Opportunistic Bacteria with Reduced Genomes Are Effective Competitors for Organic Nitrogen Compounds in Coastal Dinoflagellate Blooms. Microbiome, 9, Article No. 71.
https://doi.org/10.1186/s40168-021-01022-z
[31]  Flowers, J.J., He, S., Yilmaz, S., Noguera, D.R. and McMahon, K.D. (2009) Denitrification Capabilities of Two Biological Phosphorus Removal Sludges Dominated by Different “Candidatus Accumulibacter” Clades. Environmental Microbiology Reports, 1, 583-588.
https://doi.org/10.1111/j.1758-2229.2009.00090.x
[32]  Saito, M.A., Rocap, G. and Moffett, J.W. (2005) Production of Cobalt Binding Ligands in a Synechococcus Feature at the Costa Rica Upwelling Dome. Limnology and Oceanography, 50, 279-290.
https://doi.org/10.4319/lo.2005.50.1.0279
[33]  Herrero, A., Muro-Pastor, A.M. and Flores, E. (2001) Nitrogen Control in Cyanobacteria. Journal of Bacteriology, 183, 411-425.
https://doi.org/10.1128/JB.183.2.411-425.2001
[34]  Wawrik, B., Callaghan, A.V. and Bronk, D.A. (2009) Use of Inorganic and Organic Nitrogen by Synechococcus Spp. and Diatoms on the West Florida Shelf as Measured Using Stable Isotope Probing. Applied and Environmental Microbiology, 75, 6662-6670.
https://doi.org/10.1128/AEM.01002-09
[35]  Utermann, C., Blümel, M., Busch, K., Buedenbender, L., Lin, Y., Haltli, B., et al. (2020) Comparative Microbiome and Metabolome Analyses of the Marine Tunicate Ciona intestinalis from Native and Invaded Habitats. Microorganisms, 8, Article No. 2022.
https://doi.org/10.3390/microorganisms8122022
[36]  Keating, C., Bolton-Warberg, M., Hinchcliffe, J., Davies, R., Whelan, S., Wan, A.H.L., et al. (2021) Temporal Changes in the Gut Microbiota in Farmed Atlantic Cod (Gadus morhua) Outweigh the Response to Diet Supplementation with Macroalgae.
https://doi.org/10.1101/2020.08.10.222604
[37]  Smit, A.M., Strabala, T.J., Peng, L., Rawson, P., Lloyd-Jones, G. and Jordan, T.W. (2012) Proteomic Phenotyping of Novosphingobium nitrogenifigens Reveals a Robust Capacity for Simultaneous Nitrogen Fixation, Polyhydroxyalkanoate Production, and Resistance to Reactive Oxygen Species. Applied and Environmental Microbiology, 78, 4802-4815.
https://doi.org/10.1128/AEM.00274-12
[38]  Sorokin, D.Y. (1995) Sulfitobacter pontiacus gen. nov., sp. nov.—A New Heterotrophic Bacterium from the Black Sea, Specialized on Sulphite Oxidation. Microbiology, 64, 295-295.
[39]  Molari, M., Hassenrueck, C., Laso-Pérez, R., Wegener, G., Offre, P., Scilipoti, S., et al. (2023) A Hydrogenotrophic Sulfurimonas Is Globally Abundant in Deep-Sea Oxygen-Saturated Hydrothermal Plumes. Nature Microbiology, 8, 651-665.
https://doi.org/10.1038/s41564-023-01342-w
[40]  Coskun, O.K., Ozen, V., Wankel, S.D. and Orsi, W.D. (2019) Quantifying Population-Specific Growth in Benthic Bacterial Communities under Low Oxygen Using H218O. The ISME Journal, 13, 1546-1559.
https://doi.org/10.1038/s41396-019-0373-4
[41]  Labare, M.P. and Weiner, R.M. (1990) Interactions between Shewanella colwelliana, Oyster Larvae, and Hydrophobic Organophosphate Pesticides. Applied and Environmental Microbiology, 56, 3817-3821.
https://doi.org/10.1128/aem.56.12.3817-3821.1990
[42]  Robertson, E.K., Roberts, K.L., Burdorf, L.D.W., Cook, P. and Thamdrup, B. (2016) Dissimilatory Nitrate Reduction to Ammonium Coupled to Fe(II) Oxidation in Sediment of a Periodically Hypoxic Estuary. Limnology and Oceanography, 61, 365-381.
https://doi.org/10.1002/lno.10220
[43]  Ferry, J.G. and Lessner, D.J. (2008) Methanogenesis in Marine Sediment. Annals of the New York Academy of Sciences, 1125, 147-157.
https://doi.org/10.1196/annals.1419.007
[44]  Valentine, D.L. (2011) Emerging Topics in Marine Methane Biogeochemistry. Annual Review of Marine Science, 3, 147-171.
https://doi.org/10.1146/annurev-marine-120709-142734
[45]  Carr, S.A., Schubotz, F., Dunbar, R.B., Mills, C.T., Dias, R., Summons, R.E., et al. (2018) Acetoclastic Methanosaeta Are Dominant Methanogens in Organic-Rich Antarctic Marine Sediment. The ISME Journal, 12, 330-342.
https://doi.org/10.1038/ismej.2017.150
[46]  De Long, E.F. (1992) Archaea in Coastal Marine Environments. Proceedings of the National Academy of Sciences of the United States of America, 89, 5685-5689.
https://doi.org/10.1073/pnas.89.12.5685
[47]  Wuchter, C., Abbas, B., Coolen, M.J.L., Herfort, L., Van Bleijswijk, J., Timmers, P., et al. (2006) Archaeal Nitrification in the Ocean. Proceedings of the National Academy of Sciences, 103, 12317-12322.
https://doi.org/10.1073/pnas.0600756103
[48]  Orphan, V.J., et al. (2001) Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments. Applied and Environmental Microbiology, 67, 1922-1934.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413