全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于电商平台在线评论的运动相机消费者偏好趋势挖掘
Mining Consumer Preference Trends ofAction Cameras Based on Online Reviewson E-Commerce Platforms

DOI: 10.12677/ECL.2024.131031, PP. 248-259

Keywords: 在线评论,偏好预测,信息增益,Lasso-SVM筛选预测模型
Online Reviews
, Prediction of Preference, Gain of Information, Lasso-SVM Prediction Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

当前电商对于消费者在线评论关注度越来越高。其包含了消费者的使用体验、产品偏好等信息,能够帮助商家了解消费者满意度和未来偏好等,针对性地进行产品升级与营销调整,以更加迎合消费者购买倾向。本文结合文本挖掘、情感分析和Lasso-SVM筛选预测模型,挖掘消费者偏好趋势,为商家提供从在线评论文本提取隐含信息,有助于商家进一步了解未来产品优化方法。本文选取京东的运动相机进行实例分析,探索消费者偏好趋势挖掘,为在线评论的文本分析与偏好趋势挖掘提供了参考依据。
At present, e-commerce companies pay more and more attention to consumers’ online reviews. It contains consumers’ use experience, product preferences, and other information. For merchants, this implicit information can help them understand consumers’ satisfaction and future preferences, so as to carry out targeted product upgrades and marketing adjustments, so as to better cater to consumers’ purchase tendencies. In this paper, text mining, sentiment analysis and Lasso-SVM screening prediction model are combined to study and analyze online review text to predict consumer preference and provide a method for merchants to extract implied information from online review text and predict consumers’ future preference, which is helpful for merchants to further understand the method of future product optimization. This paper selected JD’s sports camera for example analysis to explore consumer preference trend mining and prediction, providing a reference for text analysis and preference trend mining of online reviews.

References

[1]  Zhou, G. and Liao, C.L. (2021) Dynamic Measurement and Evaluation of Hotel Customer Satisfaction through Sentiment Analysis on Online Reviews. Journal of Organizational and End User Computing, 33, 1-27.
https://doi.org/10.4018/JOEUC.20211101.oa8
[2]  Barta, S., Gurrea, R. and Flavián, C. (2023) Consequences of Consumer Regret with Online Shopping. Journal of Retailing and Consumer Services, 73, Article ID: 103332.
https://doi.org/10.1016/j.jretconser.2023.103332
[3]  Sim, Y., Lee, S.K. and Sutherland, I. (2021) The Impact of Latent Topic Valence of Online Reviews on Purchase Intention for the Accommodation Industry. Tourism Management Perspectives, 40, Article ID: 100903.
https://doi.org/10.1016/j.tmp.2021.100903
[4]  Kim, Y.J. and Kim, H.S. (2022) The Impact of Hotel Customer Experience on Customer Satisfaction through Online Reviews. Sustainability, 14, Article 848.
https://doi.org/10.3390/su14020848
[5]  Zhang, D. and Niu, B. (2024) Leveraging Online Reviews for Hotel De-mand Forecasting: A Deep Learning Approach. Information Processing & Management, 61, Article ID: 103527.
https://doi.org/10.1016/j.ipm.2023.103527
[6]  Pineda-Jaramillo, J. and Pineda-Jaramillo, D. (2022) Analysing Travel Satisfaction of Tourists towards a Metro System from Unstructured Data. Research in Transportation Business & Management, 43, Article ID: 100746.
https://doi.org/10.1016/j.rtbm.2021.100746
[7]  Yadav, H. and Sagar, M. (2023) Exploring COVID-19 Vaccine Hesitancy and Behavioral Themes Using Social Media Big-Data: A Text Mining Approach. Kybernetes, 52, 2616-2648.
https://doi.org/10.1108/K-06-2022-0810
[8]  Zhu, Z., Liu, J. and Dong, W. (2022) Factors Correlated with the Perceived Usefulness of Online Reviews for Consumers: A Meta-Analysis of the Moderating Effects of Product Type. Aslib Journal of Information Management, 74, 265-288.
https://doi.org/10.1108/AJIM-02-2021-0054
[9]  Zhang, J., Lu, X. and Liu, D. (2021) Deriving Customer Preferences for Hotels Based on Aspect-Level Sentiment Analysis of Online Reviews. Electronic Commerce Research and Applications, 49, Article ID: 101094.
https://doi.org/10.1016/j.elerap.2021.101094
[10]  Zhang, Z., Guo, J., Zhang, H., Zhou, L. and Wang, M. (2022) Product Selection Based on Sentiment Analysis of Online Reviews: An Intuitionistic Fuzzy TODIM Method. Complex & Intelligent Systems, 8, 3349-3362.
https://doi.org/10.1007/s40747-022-00678-w
[11]  Wang, Z., Gao, P. and Chu, X. (2022) Sentiment Analysis from Customer-Generated Online Videos on Product Review Using Topic Modeling and Multi-Attention BLSTM. Advanced Engineering Informatics, 52, Article ID: 101588.
https://doi.org/10.1016/j.aei.2022.101588
[12]  Obiedat, R., Qaddoura, R., Ala’M, A.Z., Al-Qaisi, L., Harfoushi, O., Alrefai, M.A. and Faris, H. (2022) Sentiment Analysis of Customers’ Reviews Using a Hybrid Evolutionary SVM-Based Approach in an Imbalanced Data Distribution. IEEE Access, 10, 22260-22273.
https://doi.org/10.1109/ACCESS.2022.3149482
[13]  Bhuvaneshwari, P., Rao, A.N., Robinson, Y.H. and Thippeswamy, M.N. (2022) Sentiment Analysis for User Reviews Using Bi-LSTM Self-Attention Based CNN Model. Multimedia Tools and Applications, 81, 12405-12419.
https://doi.org/10.1007/s11042-022-12410-4
[14]  Lucini, F.R., Tonetto, L.M., Fogliatto, F.S. and Anzanello, M.J. (2020) Text Mining Approach to Explore Dimensions of Airline Customer Satisfaction Using Online Customer Reviews. Journal of Air Transport Management, 83, Article ID: 101760.
https://doi.org/10.1016/j.jairtraman.2019.101760
[15]  Shi, W., Zhang, J. and He, S. (2023) Understanding Public Opinions on Chinese Short Video Platform by Multimodal Sentiment Analysis Using Deep Learning-Based Techniques. Kybernetes.
https://doi.org/10.1108/K-04-2023-0723
[16]  沈超, 王安宁, 陆效农, 彭张林, 张强. 基于在线评论的客户偏好趋势挖掘[J]. 系统工程学报, 2021, 36(3): 289-301.
[17]  Yakubu, H. and Kwong, C.K. (2021) Fore-casting the Importance of Product Attributes Using Online Customer Reviews and Google Trends. Technological Fore-casting and Social Change, 171, Article ID: 120983.
https://doi.org/10.1016/j.techfore.2021.120983
[18]  Nilashi, M., Ahmadi, H., Arji, G., Alsalem, K.O., Samad, S., Ghabban, F., Alarood, A.A., et al. (2021) Big Social Data and Customer Decision Making in Vegetarian Restaurants: A Combined Machine Learning Method. Journal of Retailing and Consumer Services, 62, Article ID: 102630.
https://doi.org/10.1016/j.jretconser.2021.102630
[19]  Lee, M., Kwon, W. and Back, K.J. (2021) Artificial Intelli-gence for Hospitality Big Data Analytics: Developing a Prediction Model of Restaurant Review Helpfulness for Custom-er Decision-Making. International Journal of Contemporary Hospitality Management, 33, 2117-2136.
https://doi.org/10.1108/IJCHM-06-2020-0587
[20]  Zibarzani, M., Abumalloh, R.A., Nilashi, M., Samad, S., Al-ghamdi, O.A., Nayer, F.K., Akib, N.A.M., et al. (2022) Customer Satisfaction with Restaurants Service Quality during COVID-19 Outbreak: A Two-Stage Methodology. Technology in Society, 70, Article ID: 101977.
https://doi.org/10.1016/j.techsoc.2022.101977
[21]  Hussain, W., Merigó, J.M., Raza, M.R. and Gao, H. (2022) A New QoS Prediction Model Using Hybrid IOWA-ANFIS with Fuzzy C-Means, Subtractive Clustering and Grid Parti-tioning. Information Sciences, 584, 280-300.
https://doi.org/10.1016/j.ins.2021.10.054
[22]  Khorsand, R., Rafiee, M. and Kayvanfar, V. (2020) Insights into TripAdvisor’s Online Reviews: The Case of Tehran’s Hotels. Tourism Management Perspectives, 34, Article ID: 100673.
https://doi.org/10.1016/j.tmp.2020.100673
[23]  Wang, H., Liang, T. and Cheng, Y. (2021) Prediction of Perceived Utility of Consumer Online Reviews Based on LSTM Neural Network. Mobile Information Systems, 2021, Article ID: 7054016.
https://doi.org/10.1155/2021/7054016
[24]  Jain, P.K., Patel, A., Kumari, S. and Pamula, R. (2022) Predicting Air-line Customers’ Recommendations Using Qualitative and Quantitative Contents of Online Reviews. Multimedia Tools and Applications, 81, 6979-6994.
https://doi.org/10.1007/s11042-022-11972-7
[25]  Su, Y. and Shen, Y. (2022) A Deep Learning-Based Sentiment Classification Model for Real Online Consumption. Frontiers in Psychology, 13, Article ID: 886982.
https://doi.org/10.3389/fpsyg.2022.886982
[26]  Chang, Y.M., Chen, C.H., Lai, J.P., Lin, Y.L. and Pai, P.F. (2021) Forecasting Hotel Room Occupancy Using Long Short-Term Memory Networks with Sentiment Analysis and Scores of Customer Online Reviews. Applied Sciences, 11, Article 10291.
https://doi.org/10.3390/app112110291
[27]  Oh, S., Ji, H., Kim, J., Park, E. and delPobil, A.P. (2022) Deep Learning Model Based on Expectation-Confirmation Theory to Predict Customer Satisfaction in Hospitality Service. Information Technology & Tourism, 24, 109-126.
https://doi.org/10.1007/s40558-022-00222-z
[28]  Olmedilla, M., Martínez-Torres, M.R. and Toral, S. (2022) Pre-diction and Modelling Online Reviews Helpfulness Using 1D Convolutional Neural Networks. Expert Systems with Ap-plications, 198, Article ID: 116787.
https://doi.org/10.1016/j.eswa.2022.116787
[29]  Blei, D.M., Ng, A.Y. and Jordan, M.I. (2003) Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993-1022.
[30]  王婷婷, 韩满, 王宇. LDA模型的优化及其主题数量选择研究——以科技文献为例[J]. 数据分析与知识发现, 2018, 2(1): 29-40.
[31]  Tibshirani, R. (1996) Re-gression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58, 267-288.
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133