全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进A*算法的自主式机器人路径规划
Autonomous Mobile Robot Path Planning Based on Improved A* Algorithm

DOI: 10.12677/AIRR.2024.131017, PP. 153-165

Keywords: A*算法,路径规划,邻域扩展,改进启发函数,评价函数
A* Algorithm
, Path Planning, Domain Expansion, Improve the Heuristic Function, Evaluation Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统的A*算法存在遍历子节点数量多、搜索自由度底、搜索方向夹角大所导致的路径搜索效率不高的问题进行了研究,提出一种改进的A*算法。首先增加节点数量,删除重复方向,建立16邻域搜索方式,扩大搜索角度。然后在新邻域搜索方式上,利用当前节点与目标点的方向信息局部调整搜索区间。改进启发函数和评价函数权重系数,在节点不陷入局部最优解的情况下,合理地缩小了搜索邻域。最后,在不同障碍物比例、不同栅格地图规模等16种模拟场景下进行实验。实验结果显示:改进A*算法相对于传统算法的搜索效率显著提高,极大地减少了搜索子节点的数量,提升了算法搜索的能力。
Aiming at the traditional A* algorithm which has the problems of traversing a large number of child nodes, the bottom of the search degree of freedom, and the path search efficiency caused by the large angle of the search direction, the research is carried out, and an improved A* algorithm is proposed. Firstly, in increasing the number of nodes and deleting the repetitive directions, a 16-neighborhood search method is formed, which enlarges the search angle. Then, the search interval is locally adjusted by using the direction information between the current node and the target point on the new neighborhood search method. The weight coefficients of the heuristic function and the evaluation function are improved to reasonably narrow the search neighborhood without the node falling into the local optimal solution. Finally, experiments are conducted in 16 simulated scenarios with different obstacle scales and different raster map sizes. The experimental results show that the improved A* algorithm significantly improves the search efficiency compared with the traditional algorithm, greatly reduces the number of searching sub-nodes, and improves the searching ability of the algorithm.

References

[1]  金耀青, 姜永权, 谭炳元. 智能机器人现状及发展趋势[J]. 电脑与电信, 2017(5): 27-28.
[2]  刘华军, 杨静宇, 陆建峰, 等. 移动机器人运动规划研究综述[J]. 中国工程科学, 2006, 8(1): 85-94.
[3]  鲍庆勇, 李舜酩, 沈峘, 等. 自主移动机器人局部路径规划综述[J]. 传感器与微系统, 2009, 28(9): 1-4.
[4]  Lavalle, S.M. (2006) Planning Algorithms. Cambridge University Press, Cambridge, 37-40.
https://doi.org/10.1017/CBO9780511546877
[5]  谭建豪, 潘豹, 王耀南, 等. 基于改进RRT*FN算法的机器人路径规划[J]. 控制与决策, 2021, 36(8): 1834-1840.
[6]  Lavalle, S.M. (1998) Rapidly-Exploring Random Trees: A New Tool for Path Planning. In: Donald, B.R., Lynch, K.M. and Rus, D., Eds., Algorithmic and Computational Robotics New Directions, A K Peters, Wellesley, MA, 293-308.
[7]  Dijkstra, E.W. (1959) A Note on Two Problems in Connexion with Graphs. Numerische Mathematik, 1, 269-271.
https://doi.org/10.1007/BF01386390
[8]  Hart, P.E., Nilsson, N.J. and Aphael, B.R. (1968) A Formal Basis for the Heuristic Determination of Minimum Cost Paths in Graphs. IEEE Trans on Systems Science and Cybernetics, 4, 100-107.
https://doi.org/10.1109/TSSC.1968.300136
[9]  陈万通, 刁天茹, 贾吉庆, 等. 基于扇形领域扩展的同步双向A*算法[J]. 计算机应用研究, 2022, 39(1): 118-122.
[10]  沈克宇, 游志宇, 刘永鑫, 黄涛. 基于改进A*算法的移动机器人路径规划[J]. 计算机应用研究, 2023, 40(1): 75-79.
[11]  白雄, 鲁吉林, 路宽, 等. 融合环境信息和运动约束的改进A*算法研究[J]. 计算机工程与应用, 2022, 58(18): 311-317.
[12]  郭晓静, 杨卓橙. 基于邻域拓展的静态路径规划A*算法研究[J]. 计算机工程与应用, 2022, 58(8): 168-174.
[13]  田华亭, 李涛, 秦颖. 基于A*改进算法的四向移动机器人路径搜索研究[J]. 控制与决策, 2017, 32(6): 1007-1012.
[14]  陈家宝, 文家燕, 谢广明. 基于改进A*算法的移动机器人路径规划[J]. 广西科技大学学报, 2022, 33(1): 78-84.
[15]  王小红, 叶涛. 基于改进A*算法机器人路径规划研究[J]. 计算机测量与控制, 2018, 26(7): 282-286.
[16]  祁玄玄, 黄家骏, 曹建安. 基于改进A*算法的无人车路径规划[J]. 计算机应用, 2020, 40(7): 2021-2027.
[17]  王维, 裴东, 冯璋. 改进A*算法的移动机器人最短路径规划[J]. 计算机应用, 2018, 38(5): 1523-1526.
[18]  王殿君. 基于改进A*算法的室内移动机器人路径规划[J]. 清华大学学报: 自然科学版, 2012, 52(8): 1085-1089.
[19]  Sturtevant, N. (2012) Benchmarks for Grid-Based Pathfinding. Transactions on Computational Intelligence and AI in Games, 4, 144-148.
https://doi.org/10.1109/TCIAIG.2012.2197681

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413