全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于GLCM和深度神经网络特征融合的小样本肺炎诊断算法
A Small Sample Pneumonia Diagnosis Algorithm Based on Feature Fusion of GLCM and Deep Neural Network

DOI: 10.12677/CSA.2024.142049, PP. 489-500

Keywords: 图片分类,小样本,灰度共生矩阵,ResNet50
Image Classification
, Small Sample, GLCM, ResNet50

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对图像分类的各种深度神经网络模型发展迅速,但是在训练样本极少的情况下,深度学习模型普遍无法取得良好的样本外表现。纹理是医学影像中图像识别的关键特征,本文使用灰度共生矩阵(Gray Level Co-Occurrence Matrix, GLCM)提取胸部X光片的纹理特征,与预训练的ResNet50提取的特征进行融合,最后使用机器学习分类模型对胸部X光片进行肺炎识别。在本文的7种分类算法下,使用逻辑回归分类取得了最好的结果,该模型仅使用灰度共生矩阵提取的特征的分类准确率为80%,使用预训练的ResNet50提取的特征的分类准确率为90%,融合特征分类准确率为92.5%。实验结果显示,与仅使用一种方法提取特征的分类结果相比,融合特征再分类的方法使准确率有明显的提高。
Various deep neural network models for image classification have developed rapidly, but deep learning models generally cannot achieve good out-of-sample performance with very few training samples. Texture is a key feature of medical images in image recognition, we use GLCM to extract texture features from chest X-rays, which are fused with the features extracted from pretrained ResNet50. Finally, a machine learning classification model is used to recognize pneumonia from chest X-rays. Among the seven classification algorithms in this article, the best results were achieved using Logistic Regression. The classification accuracy of the model is 80% for features extracted using only the GLCM, 90% for features extracted using pre-trained ResNet50, and 92.5% for fused features. The experimental results show that compared to the classification results using only one method to extract features, the fusion feature re-classification method significantly improves the accuracy.

References

[1]  Haralick, R.M., Shanmugam, K. and Dinstein, I.H. (1973) Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, 610-621.
https://doi.org/10.1109/TSMC.1973.4309314
[2]  Ojala, T., Pietikainen, M. and Maenpaa, T. (2002) Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 971-987.
https://doi.org/10.1109/TPAMI.2002.1017623
[3]  Dalal, N. and Triggs, B. (2005) Histograms of Oriented Gra-dients for Human Detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1, 886-893.
https://doi.org/10.1109/CVPR.2005.177
[4]  Thepade, S.D., Bang, S.V., Chaudhari, P.R. and Dindorkar, M.R. (2020) Covid19 Identification from Chest X-Ray Images Using Machine Learning Classifiers with GLCM Features. ELCVIA Electronic Letters on Computer Vision and Image Analysis, 19, 85-97.
https://doi.org/10.5565/rev/elcvia.1277
[5]  Fernandez-Grandon, C., Soto, I., Zabala-Blanco, D., Alavia, W. and Garcia, V. (2021) SVM and ANN Classification Using GLCM and HOG Features for COVID-19 and Pneumonia De-tection from Chest X-Rays. 2021 3rd South American Colloquium on Visible Light Communications (SACVLC), 11-12 November 2021, 1-6.
https://doi.org/10.1109/SACVLC53127.2021.9652248
[6]  袁茂洲. X线肺部图像的特征提取与分类方法研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2019.
[7]  H?fner, M., Liedlgruber, M., Uhl, A., Vécsei, A. and Wrba, F. (2012) Color Treatment in Endoscopic Image Classification Using Multi-Scale Local Color Vector Patterns. Medical Image Analysis, 16, 75-86.
https://doi.org/10.1016/j.media.2011.05.006
[8]  Narin, A., Kaya, C. and Pamuk, Z. (2021) Automatic Detection of Coronavirus Disease (Covid-19) Using X-Ray Images and Deep Convolutional Neural Networks. Pattern Analysis and Applications, 24, 1207-1220.
https://doi.org/10.1007/s10044-021-00984-y
[9]  Ayan, E., Karabulut, B. and ünver, H.M. (2022) Diagnosis of Pediatric Pneumonia with Ensemble of Deep Convolutional Neural Networks in Chest X-Ray Images. Arabian Journal for Science and Engineering, 47, 1-17.
https://doi.org/10.1007/s13369-021-06127-z
[10]  金哲毅, 杨晓玲. 基于深度残差网络的新冠肺炎CT影像分类系统[J]. 信息技术与信息化, 2021(10): 114-116.
[11]  莫琦岚, 张水兴. 深度学习在X线诊断新生儿肺炎中的应用[J]. 暨南大学学报(自然科学与医学版), 2022, 43(2): 199-204.
[12]  He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90
[13]  Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. and Torralba, A. (2016) Learning Deep Features for Discriminative Localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 2921-2929.
https://doi.org/10.1109/CVPR.2016.319
[14]  Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition.
[15]  Radford, A., Kim, J.W., et al. (2021) Learning Transferable Visual Models from Natural Language Supervision. International Conference on Machine Learning, 18-24 July 2021, 8748-8763. http://proceedings.mlr.press/v139/radford21a/radford21a.pdf

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413