全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于遥感数据的内蒙古黄河流域生态质量评价
Ecological Quality Evaluation of the Yellow River Basin in Inner Mongolia Based on Remote Sensing Data

DOI: 10.12677/GSER.2024.131020, PP. 211-220

Keywords: 内蒙古黄河流域,土地转移矩阵,生态质量指数
Yellow River Basin in Inner Mongolia
, Land Transfer Matrix, Ecological Quality Index

Full-Text   Cite this paper   Add to My Lib

Abstract:

黄河流域生态保护和高质量发展已成为重大国家战略,流域内的经济增长、产业发展与生态环境协同发展问题正逐渐成为研究热点,因此对于黄河流域的自然灾害检测与生态环境评价显得尤为重要。本文通过多源遥感数据对内蒙古黄河流域进行提取。通过土地利用转移矩阵对内蒙古地区黄河流域沙漠化与草地退化等自然灾害进行监控,并通过RSEI对黄河流域的生态环境进行了质量评估。内蒙古黄河流域草地退化与沙漠化在2000年到2010年这10年之间最为明显。结果如下:(1) 其中2000、2005、2010、2015、2020年草地面积为7484.5777 km2、6914.7979 km2、5965.8845 km2、5996.9663 km2、6906.6011 km2。2000年不论是高覆盖、低覆盖还是中覆盖草地的面积为最大,在2010年时草地退化最为严重。经过深入分析,我们发现草地退化的主要原因在于过度开垦导致了草地面积的减少,破坏了草原生态系统的平衡。随着农田的扩张,土地的覆被变化引发了土壤侵蚀、水资源枯竭和生物多样性丧失等问题,进而加速了草地的退化过程。但在2020年时草地面积相比于2015年增加了909.6348 km2,这其中大部分都是由耕地转为草地。(2) 内蒙古黄河流域的荒漠化面积在2000年到2015年间一直以减少为主,但在2015年至2020年之间荒漠面积增加了245.7310 km2,大部分由低覆盖草地与旱地转入,且与草地的增长有反向趋势。(3) 内蒙古地区黄河流域在生态质量指数评价中数值基本都在0.2~0.7之间,没有生态环境差与优的区域,这也是因为内蒙古黄河流域的主要用地类型为旱地,是受人为影响最为明显的区域,所以在2000~2020年间的RESI指数基本稳定,但2000年与2020年生态质量中等区域明显大于2005、2010与2015年,这与草地面积的增加有相同的规律。
Ecological protection and high-quality development in the Yellow River Basin have become a major national strategy. The issue of coordinated development of economic growth, industrial development and ecological environment in the basin is gradually becoming a research hotspot. Therefore, the detection of natural disasters and ecological environment assessment in the Yellow River Basin are particularly important. This paper extracts the Yellow River Basin in Inner Mongolia through multi-source remote sensing data. The land use transfer matrix was used to monitor natural disasters such as desertification and grassland degradation in the Yellow River Basin in Inner Mongolia, and the quality assessment of the ecological environment of the Yellow River Basin was conducted through RSEI. Grassland degradation and desertification in the Yellow River Basin in Inner Mongolia were most obvious in the 10 years from 2000 to 2010. The results are as follows: (1) Among them, the grassland area in 2000, 2005, 2010, 2015, and 2020 is 7484.5777 km2, 6914.7979 km2, 5965.8845 km2, 5996.9663 km2, and 6906.6011 km2. In 2000, the grassland area was the largest regardless of whether it was high coverage, low coverage or medium coverage. In 2010, the grassland degradation was the most serious. Through in-depth analysis, we have found that the main cause of grassland degradation is excessive cultivation leading to a reduction in grassland area, disrupting the balance of grassland ecosystems. With the expansion of farmland, changes in land cover have triggered issues such as soil erosion, depletion of water resources, and loss of biodiversity, thereby accelerating the process of grassland degradation. But in 2020, the grassland area increased by 909.6348 km2 compared with 2015, most of which

References

[1]  黄星, 马龙, 刘廷玺, 王静茹, 刘丹辉. 黄河流域内蒙古段1951-2012年气温、降水变化及其关系[J]. 自然资源学报, 2016, 31(6): 1027-1040.
[2]  滑永春, 孙小添, 白澳, 裴志永. 基于遥感黄河流域内蒙古段十大孔兑生态环境质量监测评价[J]. 水土保持研究, 2022, 29(5): 199-205.
https://doi.org/10.13869/j.cnki.rswc.2022.05.011
[3]  范一大, 吴玮, 王薇, 刘明, 温奇. 中国灾害遥感研究进展[J]. 遥感学报, 2016, 20(5): 1170-1184.
[4]  包刚, 包玉海, 李慧静, 王萨仁娜. 用MODIS数据和分裂窗算法反演内蒙古地区的地表温度[J]. 测绘科学, 2009, 34(1): 32-34.
[5]  喻锋, 李晓波, 张丽君, 徐卫华, 符蓉, 王宏. 中国生态用地研究: 内涵、分类与时空格局[J]. 生态学报, 2015, 35(14): 4931-4943.
[6]  黄俞惠. 基于遥感指数的桉树信息提取及生态环境质量评估[D]: [硕士学位论文]. 桂林: 桂林理工大学, 2020.
https://doi.org/10.27050/d.cnki.gglgc.2020.000561
[7]  James, S., Michael, C. and Kenton, L. (2014) Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance. Remote Sensing, 6, 11127-11152.
https://doi.org/10.3390/rs61111127
[8]  Storey, J., Roy, D.P., et al. (2016) A Note on the Temporary Misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery. Remote Sensing of Environment, 186, 121-122.
https://doi.org/10.1016/j.rse.2016.08.025
[9]  胡光印, 董治宝, 逯军峰, 杨林海, 南维鸽, 肖锋军. 黄河流域沙漠化空间格局与成因[J]. 中国沙漠, 2021, 41(4): 213-224.
[10]  Harmel, T., Chami, M., Tormos, T., et al. (2017) Sunglint Correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 Imagery over Inland and Sea Waters from SWIR Bands. Remote Sensing of Environment, 204, 308-321.
https://doi.org/10.1016/j.rse.2017.10.022
[11]  Thau, D. (2015) Google Earth Engine: Democratizing Global Geospatial Analysis with Cloud Computing.
[12]  卢献健, 黄俞惠, 晏红波, 等. 基于自动阈值决策树分类的桉树提取研究[J]. 林业资源管理, 2020(4): 117-126.
[13]  申震洲, 姚文艺, 肖培青, 等. 黄河流域砒砂岩区地貌-植被-侵蚀耦合研究进展[J]. 水利水运工程学报, 2020(4): 64-71
[14]  Ferguson, B.K. (1994) The Concept of Landscape Health. Journal of Environmental Management, 40, 129-137.
https://doi.org/10.1006/jema.1994.1009
[15]  张胜邦, 董旭. 青海格尔木市防治荒漠化规划研究[M]. 北京: 中国环境科学出版社, 1997.
[16]  金炯, 董光荣, 邵立业. 阿里地区狮泉河镇风沙危害与整治规划[J]. 中国沙漠, 1991, 11(3): 20-28.
[17]  董光荣, 金炯, 邵立业. 西藏自治区“一江两河”流域土地沙漠化状况[J]. 中国沙漠, 1991, 11(1): 62-64.
[18]  董立新, 王文科, 孔金玲, 等. 黄河上游玛多县生态环境变化遥感监测及成因分析[J]. 水土保持通报, 2005, 25(4): 68-72.
[19]  郭连云, 丁生祥, 汪青春. 气候变化与人类活动对共和盆地生态环境的影响[J]. 干旱地区农业研究, 2009, 27(1): 219-226.
[20]  宋永永, 薛东前, 夏四友, 等. 近40a黄河流域国土空间格局变化特征与形成机理[J]. 地理研究, 2021, 40(5): 1445-1463.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413