全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单源能量平衡模型反演灌溉牧草场实际蒸散量及其时空特征分析
Single-Source Energy Balance Model Inversion of Actual Evapotranspiration from Irrigated Pasture and Analysis of Its Spatio-Temporal Characteristics

DOI: 10.12677/GSER.2024.131021, PP. 221-231

Keywords: 能量平衡模型,实际蒸散量,遥感反演,时空分布,灌溉牧草
Energy Balance Model
, Actual Evapotranspiration, Remote Sensing Inversion, Spatiotemporal Distribution, Irrigated Pasture

Full-Text   Cite this paper   Add to My Lib

Abstract:

水资源短缺是制约干旱地区经济发展的重要因素,所以探究干旱地区生长季人工灌溉牧草实际蒸散量时空变化规律非常必要。本研究使用2013~2021年Landsat-8OIL影像基于pySEBAL模型结合气象站数据反演锡林浩特市沃原奶牛场种植基地人工灌溉牧草实际蒸散量。结果表明:由于人工灌溉牧草水分充足,该区域实际蒸散量较高,介于0~10 mm/d、50~200 mm/m之间。研究区牧草生长季(5~9月)实际蒸散量变化规律整体呈“单峰型”,其中峰值日为2014年7月25日(5.46 mm/d),峰值月为7月(155.71 mm/m),种植区界限随牧草蒸散量升高而清晰。此外,实际蒸散量变化规律与降水频率和降水量也有很好的相关性。模型反演所得实际蒸散量与FAO Penman-Monteith算法结果比较(R2 = 0.7504、RMSE = 1.2575 mm/d、MRE = 0.9366 mm/d),模型整体精度较高,能够较为准确地反映该区牧草实际蒸散情况。反演结果基本符合实际情况,可以为人工灌溉牧草用水管理提供方案,为政府合理政策制定提供依据。
Water shortage is an important factor restricting economic development in arid areas, so it is very necessary to explore the spatiotemporal changes in actual evapotranspiration of artificially irrigated forage during the growing season in arid areas. This study uses Landsat-8 OIL images from 2013 to 2021 based on the pySEBAL model and weather station data to invert the actual evapotranspiration of artificially irrigated pasture at the Woyuan Dairy Farm planting base in Xilinhot City. The results show that due to the sufficient water content of artificially irrigated pasture, the actual evapotranspiration in this area is relatively high, ranging from 0 to 10 mm/d and 50 to 200 mm/m. The change pattern of actual evapotranspiration during the pasture growing season (May-September) in the study area showed a “single peak” overall, with the peak day being July 25, 2014 (5.46 mm/d) and the peak month being July (155.71 mm/d). The boundaries of planting areas become clearer as the evapotranspiration of pasture increases. In addition, the change pattern of actual evapotranspiration is also well correlated with precipitation frequency and precipitation amount. Comparing the actual evapotranspiration obtained by the model inversion with the results of the FAO Penman-Monteith algorithm, the overall accuracy of the model is higher and can more accurately reflect the actual evapotranspiration of forage in the area (R2 = 0.7504, RMSE = 1.2575 mm/d, MRE = 0.9366 mm/d). The inversion results are basically consistent with the actual situation, and can provide solutions for artificial irrigation pasture water management and provide a basis for the government to formulate reasonable policies.

References

[1]  Mancosu, N., Snyder, R.L., Kyriakakis, G., et al. (2015) Water Scarcity and Future Challenges for Food Production. Water, 7, 975-992.
https://doi.org/10.3390/w7030975
[2]  Nyolei, D., Nsaali, M., Minaya, V., et al. (2019) High Resolution Mapping of Agricultural Water Productivity Using SEBAL in a Cultivated African Catchment, Tanzania. Physics and Chemistry of the Earth, 112, 36-49.
https://doi.org/10.1016/j.pce.2019.03.009
[3]  Bastiaanssen, W., Noordman, E., Pelgrum, H., et al. (2005) SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions. Journal of Irrigation & Drainage Engineering, 131, 85-93.
https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(85)
[4]  戚春华, 王乃康, 茅也冰. 干旱半干旱地区人工牧草节水灌溉技术研究进展[J]. 林业机械与木工设备, 2003, 31(9): 6-8.
[5]  史娜娜, 肖能文, 王琦, 等. 锡林郭勒植被NDVI时空变化及其驱动力定量分析[J]. 植物生态学报, 2019, 43(4): 331-341.
[6]  Li, Z., Tang, R., Wan, Z., et al. (2009) A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors, 9, 3801-3853.
https://doi.org/10.3390/s90503801
[7]  Zaibun, N., Sarfraz, K.M., Ajit, G., et al. (2021) Evaluation of SEBS, METRIC-EEFlux, and QWaterModel Actual Evapotranspiration for a Mediterranean Cropping System in Southern Italy. Agronomy, 11, Article No. 345.
https://doi.org/10.3390/agronomy11020345
[8]  李洋, 陈亚宁, 李卫红, 等. 塔里木河下游胡杨群落的蒸散发观测研究[J]. 新疆环境保护, 2013, 35(1): 1-7.
[9]  李念, 孙维君, 秦翔, 等. 祁连山老虎沟地区高寒草甸蒸散发估算[J]. 干旱区资源与环境, 2016, 30(6): 173-178.
[10]  Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., et al. (1998) A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation. Journal of Hydrology, 212-213, 198-212.
https://doi.org/10.1016/S0022-1694(98)00253-4
[11]  Allen, R.G., Tasumi, M. and Trezza, R. (2007) Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133, 380-394.
https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
[12]  Su, Z. (2002) The Surface Energy Balance System (SEBS) for Estimation of Turbulent Heat Fluxes. Hydrology and Earth System Sciences, 6, 85-100.
https://doi.org/10.5194/hess-6-85-2002
[13]  Xue, J., Bali, K.M., Light, S., et al. (2020) Evaluation of Remote Sensing-Based Evapotranspiration Models against Surface Renewal in Almonds, Tomatoes and Maize. Agricultural Water Management, 238, Article ID: 106228.
https://doi.org/10.1016/j.agwat.2020.106228
[14]  苏婷婷, 魏占民, 白燕英. 基于SEBAL模型的土默特右旗腾发量研究[J]. 灌溉排水学报, 2019,38(2): 70-75.
[15]  李治国, 马乐, 韩国栋, 等. 基于OMMLP模型的锡林郭勒盟不同草地类型家庭牧场草畜平衡优化模拟研究[J]. 中国草地学报, 2021,43(8): 66-73.
[16]  宋美杰, 罗艳云, 段利民. 基于改进遥感生态指数模型的锡林郭勒草原生态环境评价[J]. 干旱区研究, 2019, 36(6): 1521-1527.
[17]  刘亚红, 石磊, 常虹, 等. 锡林郭勒盟生态系统格局演变及驱动因素分析[J]. 草业学报, 2021, 30(12): 17-26.
[18]  Bastiaanssen, W. (1995) Regionalization of Surface Flux Densities and Moisture Indicators in Composite Terrain; a Remote Sensing Approach under Clear Skies in Mediterranean Climates. Ph.D. Thesis, Wageningen Agricultural University, Wageningen.
[19]  Allen, R.G., Tasumi, M., Morse, A., et al. (2005) A Landsat-Based Energy Balance and Evapotranspiration Model in Western US Water Rights Regulation and Planning. Irrigation and Drainage Systems, 19, 251-268.
https://doi.org/10.1007/s10795-005-5187-z
[20]  Hong, S.H., et al. (2014) Evaluation of an Extreme-Condition-Inverse Calibration Remote Sensing Model for Mapping Energy Balance Fluxes in Arid Riparian Areas. Hydrology and Earth System Sciences Discussions, 11, 13479-13539.
[21]  Rwasoka, D.T., Gumindoga, W. and Gwenzi, J. (2011) Estimation of Actual Evapotranspiration Using the Surface Energy Balance System (SEBS) Algorithm in the Upper Manyame Catchment in Zimbabwe. Physics and Chemistry of the Earth, 36, 736-746.
https://doi.org/10.1016/j.pce.2011.07.035
[22]  Jaafar, H.H. and Ahmad, F.A. (2018) Time Series Trends of Landsat-Based ET Using Automated Calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sensing of Environment, 238, Article ID: 111034.
https://doi.org/10.1016/j.rse.2018.12.033
[23]  Xue, J., et al. (2021) Evaluating the Role of Remote Sensing-Based Energy Balance Models in Improving Site-Specific Irrigation Management for Young Walnut Orchards. Agricultural Water Management, 256, Article ID: 107132.
https://doi.org/10.1016/j.agwat.2021.107132
[24]  Hessels, T., van Opstal, J., Trambauer, P., Bastiaanssen, W., Faouzi, M., Mohamed, Y. and Er-Raji, A. (2017) PySEBAL Version 3.3.7. 2017.
[25]  侯琼, 王英舜, 杨泽龙, 等. 内蒙古典型草原作物系数的动态模拟与确定[J]. 植物生态学报, 2010, 34(12): 1414-1423.
[26]  李宝富, 陈亚宁, 李卫红, 等. 基于遥感和SEBAL模型的塔里木河干流区蒸散发估算[J]. 地理学报, 2011, 66(9): 1230-1238.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133