全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复杂内陆湖泊水体遥感反射率质量控制与光学分类
Quality Control and Optical Classification of Remote Sensing Reflectance of Complex Inland Lake Waters

DOI: 10.12677/GSER.2024.131022, PP. 232-239

Keywords: 乌梁素海,质量控制,光学分类,遥感反射率
Wulansuhai Lake
, Quality Control, Optical Classification, Remote Sensing Reflectance

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以典型的草型湖泊乌梁素海为研究区,基于实测归一化遥感反射率数据集(N = 595组)构建了具有代表性的主要水类型遥感反射率的质量控制与光学分类方法。质量控制系统可以很好地识别出有问题的数据,提高数据的鲁棒性,对归一化遥感反射率光谱数据集进行k-means非监督分层聚类分析,定义了9种不同的光谱类型,发现各类间平均反射率光谱存在显著差异,大致分为四个湖泊特征:纯水体类型(1、2类,主要以水体透明度情况而定)、水下淹没类型(3~7类,与水生植被高度参数有关)、水面以上水草类型(8类)和挺水类型(9类),最后分析了遥感反射率光学类型及特征。
This article takes the typical grassy lake Wulansuhai as the research area and constructs a representative quality control and optical classification method for remote sensing reflectance of major water types based on the measured normalized remote sensing reflectance dataset (N = 595 sets). The quality control system can effectively identify problematic data, improve the robustness of the data, and perform k-means unsupervised hierarchical clustering analysis on the normalized remote sensing reflectance spectral dataset. Nine different spectral categories were defined, and significant differences in average reflectance spectra were found among them, which can be roughly divided into four lake characteristics: pure water types (1 and 2 categories, mainly determined by the transparency of the water body), submerged underwater types (3~7 categories, related to the height parameters of aquatic vegetation), aquatic grass type above water surface (8 categories), and emergent types (9 categories). Finally, the optical types and characteristics of remote sensing reflectance were analyzed.

References

[1]  Shi, R., Zhao, J., Shi, W., Song, S. and Wang, C. (2020) Comprehensive Assessment of Water Quality and Pollution Source Apportionment in Wuliangsuhai Lake, Inner Mongolia, China. International Journal of Environmental Research and Public Health, 17, Article 5054.
https://doi.org/10.3390/ijerph17145054
[2]  Li, C., Jia, X., Zhu, R., Mei, X., Wang, D. and Zhang, X. (2023) Seasonal Spatiotemporal Changes in the NDVI and Its Driving Forces in Wuliangsu Lake Basin, Northern China from 1990 to 2020. Remote Sensing, 15, Article 2965.
https://doi.org/10.3390/rs15122965
[3]  Wang, S.H., Wu, C., Xiao, D., Wang, J., Cheng, X. and Guo, F.B. (2017) Temporal Changes in Wetland Plant Communities with Decades of Cumulative Water Pollution in Two Plateau Lakes in China’s Yunnan Province. Journal of Mountain Science, 14, 1350-1357.
https://doi.org/10.1007/s11629-016-4037-9
[4]  Ma, S., Wu, Y., et al. (2022) The Impact of the Accumulation of Algal Blooms on Reed Wetlands in the Littoral Zones of Chaohu Lake. Journal of Oceanology and Limnology, 40, 1750-1763.
https://doi.org/10.1007/s00343-021-1258-8
[5]  Tan, Z., Zhang, B., Wu, X., Dong, M. and Cheng, L. (2022) Quality Control for Ocean Observations: From Present to Future. Science China Earth Sciences, 65, 215-233.
https://doi.org/10.1007/s11430-021-9846-7
[6]  Wei, J., Lee, Z. and Shang, S. (2016) A System to Measure the Data Quality of Spectral Remote Sensing Reflectance of Aquatic Environments. Journal of Geophysical Research: Oceans, 121, 8189-8207.
https://doi.org/10.1002/2016JC012126
[7]  Qing, S., Cui, T., Tang, J., Song, Q., Liu, R. and Bao, Y. (2022) An Optical Water Classification and Quality Control Model (OC_QC Model) for Spectral Diffuse Attenuation Coefficient. ISPRS Journal of Photogrammetry and Remote Sensing, 189, 255-271.
https://doi.org/10.1016/j.isprsjprs.2022.05.006
[8]  Xue, K., Ma, R., Wang, D. and Shen, M. (2019) Optical Classification of the Remote Sensing Reflectance and Its Application in Deriving the Specific Phytoplankton Absorption in Optically Complex Lakes. Remote Sensing, 11, Article 184.
https://doi.org/10.3390/rs11020184
[9]  Wei, J., Wang, M., et al. (2022) Global Satellite Water Classification Data Products over Oceanic, Coastal, and Inland Waters. Remote Sensing of Environment, 282, Article 113233.
https://doi.org/10.1016/j.rse.2022.113233
[10]  Da Silva, E.F.F., De Moraes Novo, E.M.L., et al. (2021) A Machine Learning Approach for Monitoring Brazilian Optical Water Types Using Sentinel-2 MSI. Remote Sensing Applications: Society and Environment, 23, Article 100577.
https://doi.org/10.1016/j.rsase.2021.100577
[11]  Zhou, B., Shang, M., et al. (2020) Long-Term Remote Tracking the Dynamics of Surface Water Turbidity Using a Density Peaks-Based Classification: A Case Study in the Three Gorges Reservoir, China. Ecological Indicators, 116, Article 106539.
https://doi.org/10.1016/j.ecolind.2020.106539
[12]  De Lucia Lobo, F., De Moraes Novo, E.M.L., Barbosa, C.C.F. and Galv?o, L.S. (2012) Reference Spectra to Classify Amazon Water Types. International Journal of Remote Sensing, 33, 3422-3442.
https://doi.org/10.1080/01431161.2011.627391
[13]  Ball, G.H. and Hall, D.J. (1967) A Clustering Technique for Summarizing Multivariate Data. Behavioral Science, 12,153-155.
https://doi.org/10.1002/bs.3830120210
[14]  Zhao, D., Jiang, H., Yang, T., Cai, Y., Xu, D. and An, S. (2012) Remote Sensing of Aquatic Vegetation Distribution in Taihu Lake Using an Improved Classification Tree with Modified Thresholds. Journal of Environmental Management, 95, 98-107.
https://doi.org/10.1016/j.jenvman.2011.10.007
[15]  Wang, Z. and Mei, B. (2021) Current Status and Challenges of the Ecological Environment of Wuliangsuhai Basin in China. IOP Conference Series: Earth and Environmental Science, 829, Article 012012.
https://doi.org/10.1088/1755-1315/829/1/012012
[16]  唐军武, 田国良, 汪小勇, 王晓梅, 宋庆君. 水体光谱测量与分析Ⅰ: 水面以上测量法[J]. 遥感学报, 2004, 8(1): 37-44.
[17]  Liew, S.C. and Chang, C.W. (2012) Detecting Submerged Aquatic Vegetation with 8-Band WorldView-2 Satellite Images. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, 22-27 July 2012, 2560-2562.
https://doi.org/10.1109/IGARSS.2012.6350957
[18]  Tibshirani, R., Walther, G. and Hastie, T. (2001) Estimating the Number of Clusters in a Data Set via the Gap Statistic. Journal of the Royal Statistical Society Series B: Statistical Methodology, 63, 411-423.
https://doi.org/10.1111/1467-9868.00293
[19]  Spyrakos, E., O’Donnell, R., et al. (2018) Optical Types of Inland and Coastal Waters: Optical Types of Inland and Coastal Waters. Limnology and Oceanography, 63, 846-870.
https://doi.org/10.1002/lno.10674

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413