全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新冠病毒感染对神经系统的影响
The Effect of COVID-19 Infection on Nervous System

DOI: 10.12677/MD.2024.141002, PP. 11-19

Keywords: 新冠病毒感染,发病机制,神经系统
COVID-19 Infection
, Pathogenesis, Nervous System

Full-Text   Cite this paper   Add to My Lib

Abstract:

新型冠状病毒肺炎是一种由新型严重急性呼吸综合征冠状病毒2型引起的传染性疾病,该病不仅引起呼吸系统症状,还可累及神经系统,并且在疾病恢复后仍会对患者产生长期影响,本文通过介绍新冠病毒感染的基本特点、临床症状以及探讨相应的发病机制,以期为新冠病毒感染的治疗以及发病机制的研究提供帮助。
Novel coronavirus pneumonia is an infectious disease caused by the new severe acute respiratory syndrome coronavirus type 2. The disease not only causes respiratory symptoms, but also affects the nervous system, and will still have a long-term impact on patients after recovery. This article introduces the basic characteristics and clinical symptoms of COVID-19 infection and discusses the corresponding pathogenesis, it is expected to provide help for the treatment of COVID-19 infection and the study of its pathogenesis.

References

[1]  (2020) The Species Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-NCoV and Naming It SARS-CoV-2. Nature Microbiology, 5, 536-544.
https://doi.org/10.1038/s41564-020-0695-z
[2]  Niu, P.H., Yang, B., Wu, H.L., et al. (2020) Genomiccharacterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. The Lancet (London, England), 395, 565-574.
https://doi.org/10.1016/S0140-6736(20)30251-8
[3]  Peng, Z., Lou, X.Y., Guang, X.W., et al. (2020) A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature, 579, 270-273.
https://doi.org/10.1038/s41586-020-2012-7
[4]  Atzrodt, C.L., Maknojia, I., Mccarthy, R.D.P., et al. (2020) A Guide to COVID-19: A Global Pandemic Caused by the Novel Coronavirus SARS-CoV-2. The FEBS Journal, 287, 3633-3650.
https://doi.org/10.1111/febs.15375
[5]  Guan, W.J., Ni, Z.Y., Hu, Y., et al. (2020) Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 382, 1708-1720.
[6]  Onder, G., Rezza, G. and Brusaferro, S. (2020) Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA, 323, 1775-1776.
https://doi.org/10.1001/jama.2020.4683
[7]  Epidemiology Working Group for NCIP Epidemic Response (2020) The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) in China. Chinese Journal of Epidemiology, 41, 145-151.
https://doi.org/10.46234/ccdcw2020.032
[8]  Mao, L., Jin, H., Wang, M., et al. (2020) Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurology, 77, 683-690.
https://doi.org/10.1001/jamaneurol.2020.1127
[9]  (2021) Global Prevalence and Burden of Depressive and Anxiety Dis-orders in 204 Countries and Territories in 2020 Due to the COVID-19 Pandemic. The Lancet (London, England), 398, 1700-1712.
[10]  Lechien, J.R., Chiesa-Estomba, C.M., Hans, S., Barillari, M.R., Jouffe, L. and Saussez, S. (2020) Loss of Smell and Taste in 2013 European Patients with Mild to Moderate COVID-19. Annals of Internal Medicine, 173, 672-675.
https://doi.org/10.7326/M20-2428
[11]  (2020) Prevalence of Chemosensory Dysfunction in COVID-19 Patients: A Sys-tematic Review and Meta-Analysis Reveals Significant Ethnic Differences. ACS Chemical Neuroscience, 11, 2944-2961.
[12]  Butowt, R. and Von Bartheld, C.S. (2020) Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychi-atry, 27, 582-603.
https://doi.org/10.1177/1073858420956905
[13]  Benetti, E., Tita, R., Spiga, O., Ciolfi, A., Birolo, G., Bruselles, A., et al. (2020) ACE2 Gene Variants May Underlie Interindividual Variability and Susceptibility to COVID-19 in the Italian Population. European Journal of Human Genetics: EJHG, 28, 1602-1614.
https://doi.org/10.1038/s41431-020-0691-z
[14]  Cao, Y.N., Li, L., Feng, Z.M., Wan, S.Q., Huang, P.D., Sun, X.H., et al. (2020) Comparative Genetic Analysis of the Novel Coronavirus (2019-NCoV/SARS-CoV-2) Receptor ACE2 in Different Populations. Cell Discovery, 6, Article No. 11.
https://doi.org/10.1038/s41421-020-0147-1
[15]  Lechien, J.R., Chiesa-Estomba, C.M., De Siati, D.R., Horoi, M., Le Bon, S.D., Rodriguez, A., et al. (2020) Olfactory and Gustatory Dysfunc-tions as a Clinical Presentation of Mild-to-Moderate Forms of the Coronavirus Disease (COVID-19): A Multicenter European Study. European Archives of Oto-Rhino-Laryngology, 277, 2251-2261.
[16]  Fotuhi, M., Mian, A., Meysami, S. and Raji, C.A. (2020) Neurobiology of COVID-19. Journal of Alzheimer’s Disease: JAD, 76, 3-19.
https://doi.org/10.3233/JAD-200581
[17]  Brann, J.H. and Firestein, S.J. (2014) A Lifetime of Neurogenesis in the Olfac-tory System. Frontiers in Neuroscience, 8, Article No. 182.
https://doi.org/10.3389/fnins.2014.00182
[18]  Bilinska, K., Jakubowska, P., Von Bartheld, C.S. and Butowt, R. (2020) Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chemical Neuroscience, 11, 1555-1562.
https://doi.org/10.1021/acschemneuro.0c00210
[19]  Merkler, A.E., Parikh, N.S., Mir, S., Gupta, A., Kamel, H., Lin, E., et al. (2020) Risk of Ischemic Stroke in Patients with Coronavirus Disease 2019 (COVID-19) vs Patients with Influenza. JAMA Neurology, 77, 1366-1372.
https://doi.org/10.1001/jamaneurol.2020.2730
[20]  Li, Y.N., Li, M., Wang, M.D., Zhou, Y.F., Chang, J., Xian, Y., et al. (2020) Acute Cerebrovascular Disease Following COVID-19: A Single Center, Retrospective, Observational Study. Stroke and Vascular Neurology, 5, 279-284.
[21]  Lee, M.-H., Perl, D.P., Nair, G., Li, W.X., Maric, D., Murray, H., et al. (2020) Micro-vascular Injury in the Brains of Patients with Covid-19. The New England Journal of Medicine, 384, 481-483.
[22]  Hosp, J.A., Dressing, A., Blazhenets, G., Bormann, T., Rau, A., Schwabenland, M., et al. (2021) Cognitive Impairment and Altered Cere-bral Glucose Metabolism in the Subacute Stage of COVID-19. Brain: A Journal of Neurology, 144, 1263-1276.
https://doi.org/10.1093/brain/awab009
[23]  Brown, E.E., Kumar, S., Rajji, K.T., et al. (2020) Anticipating and Mitigating the Impact of the COVID-19 Pandemic on Alzheimer’s Disease and Related Dementias. The American Journal of Geriatric Psychiatry, 28, 712-721.
https://doi.org/10.1016/j.jagp.2020.04.010
[24]  Gutiérrez-Ortiz, C., Méndez-Guerrero, A., Rodrigo-Rey, S., San Ped-ro-Murillo, E., Bermejo-Guerrero, L., Gordo-Ma?as, R., et al. (2020) Miller Fisher Syndrome and Polyneuritis Cranialis in COVID-19. Neurology, 95, e601-e605.
https://doi.org/10.1212/WNL.0000000000009619
[25]  Li, M.-Y., Li, L., Zhang, Y. and Wang, X.-S. (2020) Expression of the SARS-CoV-2 Cell Receptor Gene ACE2 in a Wide Variety of Human Tissues. Infectious Diseases of Poverty, 9, Article No. 45.
https://doi.org/10.1186/s40249-020-00662-x
[26]  Moriguchi, T., Harii, N., Goto, J., et al. (2020) A First Case of Menin-gitis/Encephalitis Associated with SARS-Coronavirus-2. International Journal of Infectious Diseases, 94, 55-58.
https://doi.org/10.1016/j.ijid.2020.03.062
[27]  Mannan, A.B. (2021) Chronic Long-COVID Syndrome: A Protracted COVID-19 Illness with Neurological Dysfunctions. CNS Neuroscience & Therapeutics, 27, 1433-1436.
https://doi.org/10.1111/cns.13737
[28]  Asadi‐Pooya, A.A., Akbari, A., Emami, A., et al. (2022) Long COVID Syn-drome‐Associated Brain Fog. Journal of Medical Virology, 94, 979-984.
https://doi.org/10.1002/jmv.27404
[29]  Peghin, M., Palese, A., Venturini, M., et al. (2021) Post-COVID-19 Symptoms 6 Months after Acute Infection among Hospitalized and Non-Hospitalized Patients. Clinical Microbiology and Infection, 27, 1507-1513.
https://doi.org/10.1016/j.cmi.2021.05.033
[30]  Baig, M.A. (2020) Chronic COVID Syndrome: Need for an Appropriate Medical Terminology for Long-COVID and COVID Long-Haulers. Journal of Medical Virology, 93, 2555-2556.
https://doi.org/10.1002/jmv.26624
[31]  Hampshire, A., Chatfield, D.A., MPhil, A.M., Jolly, A., Trender, W., Hellyer, P.J., et al. (2022) Multivariate Profile and Acute-Phase Correlates of Cognitive Deficits in a COVID-19 Hospitalised Cohort. EClin-icalMedicine, 47, Article ID: 101417.
https://doi.org/10.1016/j.eclinm.2022.101417
[32]  Mandal, S., Barnett, J., Brill, S.E., et al. (2021) “Long-COVID”: A Cross-Sectional Study of Persisting Symptoms, Biomarker and Imaging Abnormalities Fol-lowing Hospitalisation for COVID-19. Thorax, 76, 396-398.
https://doi.org/10.1136/thoraxjnl-2020-215818
[33]  Morin, L., Savale, L., et al. (2021) Four-Month Clinical Status of a Cohort of Patients after Hospitalization for COVID-19. JAMA: The Journal of the American Medical Association, 325, 1525-1534.
https://doi.org/10.1001/jama.2021.3331
[34]  Taquet, M., Geddes, J.R., Husain, M., Luciano, S. and Harrison, P.J. (2021) 6-Month Neurological and Psychiatric Outcomes in 236?379 Survivors of COVID-19: A Retrospective Cohort Study Using Electronic Health Records. The Lancet Psychiatry, 8, 416-427.
https://doi.org/10.1016/S2215-0366(21)00084-5
[35]  Taquet, M., Sillett, R., Zhu, L., et al. (2022) Neurological and Psy-chiatric Risk Trajectories after SARS-CoV-2 Infection: An Analysis of 2-Year Retrospective Cohort Studies Including 1284437 Patients. The Lancet Psychiatry, 9, 815-827.
https://doi.org/10.1016/S2215-0366(22)00260-7
[36]  Lu, Y., Li, X., Geng, D., et al. (2020) Cerebral Micro-Structural Changes in COVID-19 Patients—An MRI-Based 3-Month Follow-Up Study. EClinicalMedicine, 25, Article ID: 100484.
https://doi.org/10.1016/j.eclinm.2020.100484
[37]  Helms, J., Kremer, S., Merdji, H., Clere-Jehl, R., Schenck, M., Kummerlen, C., et al. (2020) Neurologic Features in Severe SARS-CoV-2 Infection. The New England Journal of Medicine, 382, 2268-2270.
https://doi.org/10.1056/NEJMc2008597
[38]  Hamming, I., Timens, W., Bulthuis, M.L.C., Lely, A.T., Navis, G.J. and Van Goor, H. (2004) Tissue Distribution of ACE2 Protein, the Functional Receptor for SARS Coronavirus. A First Step in Understanding SARS Pathogenesis. The Journal of Pathology, 203, 631-637.
https://doi.org/10.1002/path.1570
[39]  Matschke, J., Lütgehetmann, M., Hagel, C., Sperhake, J.P., Schr?der, A.S., Edler, C., et al. (2020) Neuropathology of Patients with COVID-19 in Germany: A Post-Mortem Case Series. The Lancet Neurology, 19, 919-929.
https://doi.org/10.1016/S1474-4422(20)30308-2
[40]  Politi, S.L., Salsano, E. and Grimaldi, M. (2020) Magnetic Reso-nance Imaging Alteration of the Brain in a Patient with Coronavirus Disease 2019 (COVID-19) and Anosmia. JAMA Neurology, 77, 1028-1029.
https://doi.org/10.1001/jamaneurol.2020.2125
[41]  Solomon, I.H., Normandin, E., Bhattacharyya, S., Mukerji, S.S., Keller, K., Ali, A.S., et al. (2020) Neuropathological Features of Covid-19. The New England Journal of Medicine, 383, 989-992.
https://doi.org/10.1056/NEJMc2019373
[42]  Rutkai, I., Mayer, M.G., Hellmers, L.M., Ning, B., Huang, Z., Monjure, C.J., et al. (2022) Neuropathology and Virus in Brain of SARS-CoV-2 Infected Non-Human Primates. Nature Communica-tions, 13, Article No. 1745.
https://doi.org/10.1038/s41467-022-29440-z
[43]  Spudich, S. and Nath, A. (2022) Nervous System Consequences of COVID-19. Science (New York, N.Y.), 375, 267-269.
https://doi.org/10.1126/science.abm2052
[44]  Wenzel, J., Lampe, J., Müller-Fielitz, H., Schuster, R., Zille, M., Müller, K., et al. (2021) The SARS-CoV-2 Main Protease Mpro Causes Microvas-cular Brain Pathology by Cleaving NEMO in Brain Endothelial Cells. Nature Neuroscience, 24, 1522-1533.
https://doi.org/10.1038/s41593-021-00926-1
[45]  Wu, J. and Chen, J.Z. (2014) Innate Immune Sensing and Signaling of Cytosolic Nucleic Acids. Annual Review of Immunology, 32, 461-488.
https://doi.org/10.1146/annurev-immunol-032713-120156
[46]  Kondylis, V., Kumari, S., Vlantis, K. and Pasparakis, M. (2017) The Interplay of IKK, NF-κB and RIPK1 Signaling in the Regulation of Cell Death, Tissue Homeostasis and Inflamma-tion. Immunological Reviews, 277, 113-127.
https://doi.org/10.1111/imr.12550
[47]  Zhao, Z. (1999) Molecular Mimicry by Herpes Simplex Virus-Type 1: Autoim-mune Disease after Viral Infection. Science, 279, 1344-1347.
https://doi.org/10.1126/science.279.5355.1344
[48]  Qin, C., Zhou, L.Q., Hu, Z.W., Zhang, S.Q., Yang, S., Tao, Y., et al. (2020) Dysregulation of Immune Response in Patients with Coro-navirus 2019 (COVID-19) in Wuhan, China. Clinical Infectious Diseases, 71, 762-768.
https://doi.org/10.1093/cid/ciaa248
[49]  Wang, E.Y., Mao, T.Y., Klein, J., et al. (2021) Diverse Functional Autoantibodies in Patients with COVID-19. Nature, 595, 283-288.
[50]  Vlachoyiannopoulos, P.G., Magira, E., Alexopoulos, H., Jahaj, E., Theophilopoulou, K., Kotanidou, A., et al. (2020) Autoantibodies Related to Systemic Autoimmune Rheumatic Diseases in Se-verely Ill Patients with COVID-19. Annals of the Rheumatic Diseases, 79, 1661-1663.
https://doi.org/10.1136/annrheumdis-2020-218009
[51]  Jose, R.J. (2020) COVID-19 Cytokine Storm: The Interplay be-tween Inflammation and Coagulation. The Lancet Respiratory Medicine, 8, E46-E47.
https://doi.org/10.1016/S2213-2600(20)30216-2
[52]  Fernández-Casta?eda, A., Lu, P.W., Geraghty, A.C., Song, E., Lee, M.-H., Wood, J., et al. (2022) Mild Respiratory COVID Can Cause Multi-Lineage Neural Cell and Myelin Dysregulation. Cell, 185, 2452-2468.
https://doi.org/10.1016/j.cell.2022.06.008
[53]  Nazarinia, D., Behzadifard, M., Gholampour, J., Karimi, R. and Gholampour, M. (2022) Eotaxin-1 (CCL11) in Neuroinflammatory Disorders and Possible Role in COVID-19 Neurologic Complications. Actaneurologica Belgica, 122, 865-869.
https://doi.org/10.1007/s13760-022-01984-3
[54]  McAlpine, L.S., Zubair, A.S., Maran, I., Chojecka, P., Lleva, P., Jasne, A.S., et al. (2021) Ischemic Stroke, Inflammation, and Endotheliopathy in COVID-19 Patients. Stroke, 52, e233-e238.
https://doi.org/10.1161/STROKEAHA.120.031971
[55]  Spiezia, L., Boscolo, A., Poletto, F., Cerruti, L., Tiberio, I., Campello, E., et al. (2020) COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thrombosis and Haemostasis, 120, 998-1000.
https://doi.org/10.1055/s-0040-1710018
[56]  Nannoni, S., de Groot, R., Bell, S., et al. (2021) Stroke in COVID-19: A Systematic Review and Meta-Analysis. International Journal of Stroke: Official Journal of the International Stroke Society, 16, 137-149.
https://doi.org/10.1177/1747493020972922
[57]  Thakur, K.T., Miller, E.H., Glendinning, M.D., Al-Dalahmah, O., Banu, M.A., Boehme, A.K., et al. (2021) COVID-19 Neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain: A Journal of Neurology, 144, 2696-2708.
https://doi.org/10.1093/brain/awab148
[58]  Monje, M. and Iwasaki, A. (2022) The Neurobiology of Long COVID. Neuron, 110, 3484-3496.
https://doi.org/10.1016/j.neuron.2022.10.006

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413