全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

降钙素原与白蛋白比值在脓毒症并发急性呼吸窘迫综合征预后中的评估价值
Evaluation of the Prognostic Value of the Procalcitonin to Albumin Ratio in Patients with Sepsis-Induced Acute Respiratory Distress Syndrome

DOI: 10.12677/MD.2024.141007, PP. 45-55

Keywords: 脓毒症,急性呼吸窘迫综合征,降钙素原,白蛋白,降钙素原与白蛋白比值
Sepsis
, Acute Respiratory Distress Syndrome, Procalcitonin, Albumin, Procalcitonin to Albumin Ra-tio

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨降钙素原与白蛋白比值(PAR)在脓毒症并发急性呼吸窘迫综合征(ARDS)预后中的评估价值。方法:回顾性分析2019年9月~2022年9月入住益阳市中心医院呼吸内科重症监护室(Respiratory Intensive Care Unit, RICU)的131例脓毒症并发ARDS患者的临床资料,根据患者28天预后,进一步将脓毒症并发ARDS患者分成生存组(n = 71)和死亡组(n = 60),比较两组降钙素原与白蛋白比值的差异,采用受试者工作曲线(ROC)评估PAR对脓毒症并发ARDS的预后价值;Spearman相关分析分析PAR与SOFA评分的相关性;Cox回归筛选脓毒症并发ARDS预后的独立危险因素;进一步比较不同亚组的PAR水平;最后采用Kaplan-Meier生存分析法比较不同PAR水平患者的生存率。结果:死亡组PAR水平显著高于生存组[0.85 (0.11, 2.84) vs. 0.19 (0.03, 1.01), P = 0.001]。ROC曲线分析表明,PAR判断脓毒症并发ARDS的预后性能最佳,曲线下面积(AUC)为0.725 (95% CI: 0.6141~0.800, P < 0.001),截断值为1.74,敏感度为40.00%,特异度为98.55%。相关性分析表明PAR与SOFA评分成正相关(r = 0.365, P < 0.001)。多因素Cox回归分析表明PAR高水平是脓毒症并发ARDS预后的独立危险因素(HR: 1.316, 95% CI: 1.092~1.584, P = 0.004)。亚组分析表明革兰阴性杆菌组PAR水平显著高于革兰阳性球菌组[1.24 (0.20, 2.65) vs. 0.13 (0.03, 0.79), P < 0.001]。生存分析表明PAR > 1.74的脓毒症并发ARDS患者28-d预后更差(P < 0.001)。结论:PAR对脓毒症并发ARDS患者28 d死亡率有一定的预测价值,当PAR > 1.74时,脓毒症并发ARDS患者28 d死亡率更高。
Objective: To investigate the prognostic value of serum procalcitonin to albumin ratio (PAR) for the patients with sepsis-induced acute respiratory distress syndrome (ARDS). Methods: To retrospec-tively analyze the clinical data of 131 patients with sepsis-induced ARDS admitted to the respirato-ry intensive care unit (RICU) of Yiyang Central Hospital from September 2019 to September 2022. According to the prognosis at 28 d, 131 sepsis patients were divided into survival group (n = 71) and non-survival group (n = 60). PAR levels were compared between different groups. The receiver operating characteristic (ROC) curve was used to evaluate the prognostic value of PAR for sep-sis-induced ARDS. Spearman correlation was used to test for an association between PAR and SOFA score. Independent prognostic factors of sepsis-induced ARDS were evaluated using the Cox regres-sion analyses. PAR levels amongst various subgroups were further compared. Finally, the Kaplan-Meier survival analysis was used to compare the survival status of patients with different PAR levels. Results: The PAR level of the non-survival group was significantly higher than that of the survival group [0.85 (0.11, 2.84) vs. 0.19 (0.03, 1.01), P = 0.001]. ROC curve analysis showed that PAR had the best prognostic performance in determining sepsis-induced ARDS, the area under ROC curve of PAR in predicting prognosis was 0.725 (95% CI: 0.6141~0.800, P < 0.001), and the cutoff value, the sensitivity, and the specificity were ?1.74, 40.00%, 98.55%, respectively. Correlation analysis suggested a significant positive correlation between serum PAR levels and SOFA scores (r = 0.365, P < 0.001). Multivariate Cox

References

[1]  Van Den Berg, M., Van Beuningen, F.E., et al. (2022) Hospital-Related Costs of Sepsis around the World: A Systematic Re-view Exploring the Economic Burden of Sepsis. Journal of Critical Care, 71, Article ID: 154096.
https://doi.org/10.1016/j.jcrc.2022.154096
[2]  Rudd, K.E., Johnson, S.C., Agesa, K.M., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211.
https://doi.org/10.1016/S0140-6736(19)32989-7
[3]  Li, S., Zhao, D., Cui, J., et al. (2020) Correlation of Mi-croRNA-125a/B with Acute Respiratory Distress Syndrome Risk and Prognosis in Sepsis Patients. Journal of Clinical Labor-atory Analysis, 34, E23098.
https://doi.org/10.1002/jcla.23098
[4]  Galluzzi, L., Vitale, I., Aaronson, S.A., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541.
https://doi.org/10.1038/s41418-017-0012-4
[5]  Chelazzi, C., Villa, G., Mancinelli, P., et al. (2015) Glycocalyx and Sep-sis-Induced Alterations in Vascular Permeability. Critical Care, 19, Article No. 26.
https://doi.org/10.1186/s13054-015-0741-z
[6]  Huang, X., Hu, H., Sun, T., et al. (2021) Plasma Endothelial Glycocalyx Components as a Potential Biomarker for Predicting the Development of Disseminated Intravascular Coagulation in Patients with Sepsis. Journal of Intensive Care Medicine, 36, 1286-1295.
https://doi.org/10.1177/0885066620949131
[7]  Huppert, L.A. and Matthay, M.A. (2017) Alveolar Fluid Clearance in Pathologically Relevant Conditions: In Vitro and in Vivo Models of Acute Respiratory Distress Syndrome. Frontiers in Immu-nology, 8, Article No. 371.
https://doi.org/10.3389/fimmu.2017.00371
[8]  Faust, H.E., Reilly, J.P., Anderson, B.J., et al. (2020) Plasma Mitochon-drial DNA Levels Are Associated with ARDS in Trauma and Sepsis Patients. Chest, 157, 67-76.
https://doi.org/10.1016/j.chest.2019.09.028
[9]  He, X., Li, C., Yin, H., et al. (2022) Mesenchymal Stem Cells Inhibited the Apoptosis of Alveolar Epithelial Cells Caused by ARDS through CXCL12/CXCR4 Axis. Bioengineered, 13, 9060-9070.
https://doi.org/10.1080/21655979.2022.2052652
[10]  Cusack, R., Bos, L.D., Povoa, P., et al. (2023) Endothelial Dys-function Triggers Acute Respiratory Distress Syndrome in Patients with Sepsis: A Narrative Review. Frontiers in Medicine (Lausanne), 10, Article ID: 1203827.
https://doi.org/10.3389/fmed.2023.1203827
[11]  Merad, M. and Martin, J.C. (2020) Pathological Inflammation in Patients with COVID-19: A Key Role for Monocytes and Macrophages. Nature Reviews Immunology, 20, 355-362.
https://doi.org/10.1038/s41577-020-0331-4
[12]  Wu, Y.T., Xu, W.T., Zheng, L., et al. (2023) 4-Octyl Itaconate Amelio-rates Alveolar Macrophage Pyroptosis against ARDS via Rescuing Mitochondrial Dysfunction and Suppressing the CGAS/STING Pathway. International Immunopharmacology, 118, Article ID: 110104.
https://doi.org/10.1016/j.intimp.2023.110104
[13]  Li, T., Li, X., Liu, X., et al. (2022) Association of Procalcitonin to Al-bumin Ratio with the Presence and Severity of Sepsis in Neonates. Journal of Inflammation Research, 15, 2313-2321.
https://doi.org/10.2147/JIR.S358067
[14]  王玉, 黄栋, 梁宗安. 降钙素原与白蛋白比值对急性呼吸窘迫综合征患者预后的预测价值[J]. 中国呼吸与危重监护杂志, 2020, 19(3): 240-245.
[15]  Evans, L., Rhodes, A., Alhazzani, W., et al. (2021) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Medicine, 47, 1181-1247.
https://doi.org/10.1007/s00134-021-06506-y
[16]  Gorman, E.A., O’kane, C.M. and Mcauley, D.F. (2022) Acute Respir-atory Distress Syndrome in Adults: Diagnosis, Outcomes, Long-Term Sequelae, and Management. The Lancet, 400, 1157-1170.
https://doi.org/10.1016/S0140-6736(22)01439-8
[17]  包华瑞, 丁振兴, 谈媛媛, 等. 肝素结合蛋白评估脓毒症相关急性呼吸窘迫综合征患者预后价值研究[J]. 临床肺科杂志, 2022, 27(7): 1036-1041.
[18]  Irwin, A.D. and Carrol, E.D. (2011) Procalcitonin. ADC Education & Practice, 96, 228-233.
https://doi.org/10.1136/archdischild-2011-300178
[19]  Aloisio, E., Dolci, A. and Pantechini, M. (2019) Procalcitonin: Between Evidence and Critical Issues. Clinica Chimica Acta, 496, 7-12.
https://doi.org/10.1016/j.cca.2019.06.010
[20]  Cheng, Z.B. and Chen, H. (2020) Higher Incidence of Acute Respiratory Distress Syndrome in Cardiac Surgical Patients with Elevated Serum Procalcitonin Concentration: A Prospective Cohort Study. European Journal of Medical Researchs, 25, Article No. 11.
https://doi.org/10.1186/s40001-020-00409-2
[21]  Zhang, Q., Hu, W.T., Yin, F., et al. (2021) The Clinical Characteristics of ARDS in Children with Hematological Neoplasms. Frontiers in Pediatrics, 9, Article ID: 696594.
https://doi.org/10.3389/fped.2021.696594
[22]  Richards, O., Pallmann, P., King, C., et al. (2021) Procalcitonin Increase Is Associated with the Development of Critical Care-Acquired Infections in COVID-19 ARDS. Antibiotics (Basel), 10, Article No. 1425.
https://doi.org/10.3390/antibiotics10111425
[23]  Zhao, J., Tan, Y., Wang, L., et al. (2020) Discriminatory Ability and Prognostic Evaluation of Presepsin for Sepsis-Related Acute Respiratory Distress Syndrome. Scientific Reports, 10, Article No. 9114.
https://doi.org/10.1038/s41598-020-66121-7
[24]  Li, F., Ye, Z., Zhu, J., Gu, S., Peng, S., Fang, Y., Hu, L. and Xiong, J. (2023) Early Lactate/Albumin and Procalcitonin/Albumin Ratios as Predictors of 28-Day Mortality in ICU-Admitted Sepsis Pa-tients: A Retrospective Cohort Study. Medical Science Monitor, 29, e940654.
https://doi.org/10.12659/MSM.940654
[25]  Zhou, S.Y., Zeng, Z.H., Wei, H.X., et al. (2021) Early Combination of Al-bumin with Crystalloids Administration Might Be Beneficial for the Survival of Septic Patients: A Retrospective Analysis from MIMIC-IV Database. Annals of Intensive Care, 11, Article No. 42.
https://doi.org/10.1186/s13613-021-00830-8
[26]  Geng, L., Tian, X.X., Gao, Z.F., et al. (2023) Different Concentrations of Albumin versus Crystalloid in Patients with Sepsis and Septic Shock: A Meta-Analysis of Randomized Clinical Trials. Jour-nal of Intensive Care Medicine, 38, 679-689.
https://doi.org/10.1177/08850666231170778
[27]  Lippi, G. and Plebani, M. (2020) Laboratory Abnormalities in Patients with COVID-2019 Infection. Clinical Chemistry and Laboratory Medicine, 58, 1131-1134.
https://doi.org/10.1515/cclm-2020-0198
[28]  Thongprayoon, C., Cheungpasitporn, W., Chewcharat, A., et al. (2020) Risk of Acute Respiratory Failure among Hospitalized Patients with Various Admission Serum Albumin Levels: A Co-hort Study. Medicine (Baltimore), 99, E19352.
https://doi.org/10.1097/MD.0000000000019352
[29]  Namendys-Silva, S.A., Gonzalez-Herrera, M.O., Texco-cano-Becerra, J., et al. (2011) Hypoalbuminemia in Critically Ill Patients with Cancer: Incidence and Mortality. The American Journal of Hospice & Palliative Care, 28, 253-257.
https://doi.org/10.1177/1049909110384841
[30]  Thongprayoon, C., Cheungpasitporn, W., Chewcharat, A., et al. (2020) Impacts of Admission Serum Albumin Levels on Short-Term and Long-Term Mortality in Hospitalized Patients. QJM, 113, 393-398.
https://doi.org/10.1093/qjmed/hcz305
[31]  Yu, M.Y., Lee, S.W., Baek, S.H., et al. (2017) Hypoalbuminemia at Admis-sion Predicts the Development of Acute Kidney Injury in Hospitalized Patients: A Retrospective Cohort Study. PLOS ONE, 12, E0180750.
https://doi.org/10.1371/journal.pone.0180750
[32]  Yu, Y.T., Liu, J., Hu, B., et al. (2021) Expert Consensus on the Use of Human Serum Albumin in Critically Ill Patients. Chinese Medical Journal (England), 134, 1639-1654.
https://doi.org/10.1097/CM9.0000000000001661
[33]  Thongprayoon, C., Cheungpasitporn, W., Mao, M.A., et al. (2018) U-Shape Association of Serum Albumin Level and Acute Kidney Injury Risk in Hospitalized Patients. PLOS ONE, 13, E0199153.
https://doi.org/10.1371/journal.pone.0199153
[34]  Aman, J., Van Der Heijden, M., Van Lingen, A., et al. (2011) Plasma Protein Levels Are Markers of Pulmonary Vascular Permeability and Degree of Lung Injury in Critically Ill Patients with or at Risk for Acute Lung Injury/Acute Respiratory Distress Syndrome. Critical Care Medicine, 39, 89-97.
https://doi.org/10.1097/CCM.0b013e3181feb46a
[35]  Su, C., Hoffman, K.L., Xu, Z., et al. (2021) Evaluation of Albumin Kinetics in Critically Ill Patients with Coronavirus Disease 2019 Compared to Those with Sepsis-Induced Acute Respiratory Distress Syndrome. Critical Care Explorations, 3, E0589.
https://doi.org/10.1097/CCE.0000000000000589
[36]  You, T., Zhou, Y.R., Liu, X.C., et al. (2022) Risk Factors and Clinical Characteristics of Neonatal Acute Respiratory Distress Syndrome Caused by Early Onset Sepsis. Frontiers in Pediatrics, 10, Article ID: 847827.
https://doi.org/10.3389/fped.2022.847827
[37]  张芮豪, 夏金根, 詹庆元. 脓毒症并发急性呼吸窘迫综合征的危险因素及预测评分研究进展[J]. 解放军医学杂志, 2020, 45(12): 1309-1314.
[38]  宋琳琳, 王琰, 张向阳, 等. NEWS MEWS和MEDS对急诊感染患者预后的评估价值比较[J]. 中国急救医学, 2018, 38(6): 465-470.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133