全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于组合权重-TOPSIS的海水水质综合评价方法
A Comprehensive Evaluation Method of Seawater Quality Based on Combination Weight-TOPSIS

DOI: 10.12677/AMS.2024.111002, PP. 10-20

Keywords: 海水水质,组合权重,综合评价
Seawater Quality
, Combination Weight, Comprehensive Evaluation

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对神经网络网络结构的选择尚无统一而完整的理论指导以及训练样本多样性不足等问题,提出了一种新的基于组合权重-TOPSIS的海水水质评价模型。该模型在权重选取时为了避免主观因素的干扰,分别采用熵权法与CRITIC赋权法计算客观权重,然后利用最小鉴别信息原理计算出组合权重,最后结合TOPSIS方法对胶州湾采集的数据进行实例分析并与其它方法进行对比。实验结果表明,该评价模型能充分利用样本信息,评价结果与相关文献中的结果基本一致,所提模型为海水水质评价提供了一种新的参考。
Aiming at the lack of unified and complete theoretical guidance for the selection of neural network structure and insufficient diversity of training samples, a new seawater quality evaluation model based on combined weight-TOPSIS is proposed. In order to avoid the interference of subjective factors in weight selection, the model uses the entropy weight method and the CRITIC empowerment method to calculate the objective weights, and then uses the principle of least identification information to calculate the combined weights, and finally combines the TOPSIS method to analyze the data collected in Jiaozhou Bay by example and compare with other methods. The experimental results show that the evaluation model can make full use of the sample information, and the evaluation results are basically consistent with the results in the relevant literature, and the proposed model provides a new reference for the evaluation of seawater quality.

References

[1]  Zhu, M., Wang, J., Yang, X., Zhang, Y., et al. (2022) A Review of the Application of Machine Learning in Water Qual-ity Evaluation. Eco-Environment & Health, 1, 107-116.
https://doi.org/10.1016/j.eehl.2022.06.001
[2]  楼文高. 海水水质评价的人工神经网络模型研究[J]. 海洋环境科学, 2001(4): 49-53.
[3]  李雪, 刘长发, 朱学慧. 基于BP人工神经网络的海水水质综合评价[J]. 海洋通报, 2010, 29(2): 225-230.
[4]  刁美娜, 温小虎, 刘有刚, 王德, 等. 基于模糊神经网络的海水水质综合评价[J]. 海洋通报, 2012, 31(2): 228-232.
[5]  徐勇, 赵俊, 过锋, 乔向英, 等. 基于BP人工神经网络的大沽河湿地海水水质综合评价[J]. 渔业科学进展, 2015, 36(5): 31-37.
[6]  李海涛, 王博睿. 基于粒子群算法优化的BP神经网络在海水水质评价中的应用[J]. 海洋科学, 2020, 44(6): 31-36.
[7]  李海涛, 邵泽东. 基于头脑风暴优化算法与BP神经网络的海水水质评价模型研究[J]. 应用海洋学学报, 2020, 39(1): 57-62.
[8]  Sun, X., Wang, X., Cai, D., Li, Z., et al. (2020) Multivariate Seawater Quality Prediction Based on PCA-RVM Supported by Edge Computing towards Smart Ocean. IEEE Access, 8, 54506-54513.
https://doi.org/10.1109/ACCESS.2020.2981528
[9]  李航. 机器学习方法[M]. 北京: 清华大学出版社, 2022.
[10]  吕志鹏, 吴鸣, 宋振浩, 赵婷, 等. 电能质量CRITIC-TOPSIS综合评价方法[J]. 电机与控制学报, 2020, 24(1): 137-144.
[11]  张小允, 鲍洁, 许世卫. 基于熵权TOPSIS模型的中国粮食安全评价研究[J]. 中国农业资源与区划, 2023, 44(4): 35-44.
[12]  安洪庆, 李伟, 蔡伟芹. 基于TOPSIS法联合RSR法的预防医学生对岗位胜任力要素认同的综合评价[J]. 现代预防医学, 2022, 49(4): 764-768.
[13]  Airesa, R.F.F. and Ferreirab, L. (2019) A New Approach to Avoid Rank Reversal Cases in the TOPSIS Method. Computers & Industrial Engineering, 132, 84-97.
https://doi.org/10.1016/j.cie.2019.04.023
[14]  Xiao, L., Li, F., Niu, C., Dai, G., et al. (2022) Evaluation of Water Inrush Hazard in Coal Seam Roof Cased on the AHP-CRITIC Composite Weighted Method. Energies, 16, 114.
https://doi.org/10.3390/en16010114
[15]  孙即祥. 现代模式识别[M]. 第2版. 北京: 高等教育出版社, 2012.
[16]  国家环境保护局, 国家海洋局. 海水水质标准: GB 3097-1997 [S]. 北京: 中国标准出版社, 1998.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133