全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

全球变化对植物水分生理生态的影响
The Impact of Global Change on Plant Water Physiology and Ecology

DOI: 10.12677/BR.2024.132013, PP. 110-118

Keywords: 全球变化,植物,水分生理生态特征,气候变化,土地利用变化,人类活动,生态系统,可持续发展
Global Change
, Plants, Water Physiological and Ecological Characteristics, Climate Change, Land Use Change, Human Activities, Ecosystems, Sustainable Development

Full-Text   Cite this paper   Add to My Lib

Abstract:

全球变化是当今世界面临的重大挑战,涵盖气候变化、土地利用变化和人类活动等多个关键因素。植物作为生态系统的基石,在这一变化过程中发挥着关键的角色。植物水分生理生态特征的变化对于生态系统的稳定性和可持续发展具有重要影响。深入研究全球变化对植物水分生理生态特征的影响以及植物对全球变化的响应机制对于揭示植物与环境之间的相互作用关系至关重要。目前,有关全球变化如何影响植物的研究已受到学者们的广泛关注,但大多聚焦于全球气候变化过程,对土地利用变化和人类活动对植物的影响描述仍十分有限。本文旨在综述全球变化对植物水分生理生态特征的影响,并重点关注气候变化、土地利用变化和人类活动对植物水分关键过程的影响。通过综合分析相关研究成果,总结已有观察和实验结果,本文对全球变化背景下植物水分生理生态特征的变化进行了全面深入的讨论。通过这样的努力,为揭示植物与全球变化之间的复杂关系提供新的见解,并为环境保护和生态可持续发展提供科学指导。
Global change is a significant challenge facing the world today, encompassing multiple key factors such as climate change, land use change, and human activities. Plants, as the cornerstones of eco-systems, play a crucial role in this changing process. Changes in plant water physiology and ecologi-cal characteristics have important implications for the stability and sustainable development of ecosystems. In-depth research on the effects of global change on the water physiology and ecological characteristics of plants, as well as the response mechanisms of plants to global change, is crucial for unraveling the interactions between plants and the environment. Currently, research on how global change affects plants has attracted widespread attention from scholars, but most of it focuses on the process of global climate change, with limited descriptions of the effects of land use change and hu-man activities on plants. This paper aims to provide an overview of the impact of global change on the water physiology and ecological characteristics of plants, with a specific focus on the effects of climate change, land use change, and human activities on key processes related to plant water dy-namics. By comprehensively analyzing relevant research findings and summarizing existing obser-vations and experimental results, this paper presents a comprehensive and in-depth discussion on the changes in plant water physiology and ecological characteristics in the context of global change. Through such efforts, new insights into the complex relationship between plants and global change can be revealed, providing scientific guidance for environmental protection and sustainable ecolog-ical development.

References

[1]  Vitousek, P.M. (1994) Beyond Global Warming: Ecology and Global Change. Ecology, 75, 1861-1876.
https://doi.org/10.2307/1941591
[2]  李秀彬. 全球环境变化研究的核心领域——土地利用/土地覆被变化的国际研究动向[J]. 地理学报, 1996, 51(6): 553-558.
[3]  Houghton, J.T., Jenkins, G.J. and Ephraums, J.J. (1990) Climate Change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge.
[4]  (1992) Climate Change 1992. Cambridge University Press, Cambridge.
[5]  (1995) Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC 1992 IS92 Emission Scenarios. Cambridge University Press, Cam-bridge.
[6]  Lei, X.D., Peng, C.H., Tian, D.L., et al. (2007) Meta-Analysis and Its Application in Global Change Re-search. Chinese Science Bulletin, 52, 289-302.
https://doi.org/10.1007/s11434-007-0046-y
[7]  Intergovernmental Panel on Climate Change (2014) Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cam-bridge.
https://doi.org/10.1017/CBO9781107415324
[8]  Gates, D.M. (1993) Climate Change and Its Biological Consequences. Sinauer Associates, Sunderland.
[9]  Fischer, E.M., Beyerle, U. and Knutti, R. (2013) Robust Spatially Aggregated Projections of Climate Extremes. Nature Climate Change, 3, 1033-1038.
https://doi.org/10.1038/nclimate2051
[10]  Lin, R., Zhou, T. and Qian, Y. (2014) Evaluation of Global Monsoon Precipitation Changes Based on Five Reanalysis Datasets. Journal of Climate, 27, 1271-1289.
https://doi.org/10.1175/JCLI-D-13-00215.1
[11]  Huang, J., Yu, H., Guan, X., et al. (2016) Accelerated Dryland Expansion under Climate Change. Nature Climate Change, 6, 166-171.
https://doi.org/10.1038/nclimate2837
[12]  Trenberth, K.E. (2011) Changes in Precipitation with Climate Change. Climate Research, 47, 123-138.
https://doi.org/10.3354/cr00953
[13]  Diffenbaugh, N.S., Singh, D., Mankin, J.S., et al. (2017) Quantifying the In-fluence of Global Warming on Unprecedented Extreme Climate Events. Proceedings of the National Academy of Sciences of the United States of America, 114, 4881-4886.
https://doi.org/10.1073/pnas.1618082114
[14]  Maestre, F.T., Delgado-Baquerizo, M., Jeffries, T.C., et al. (2015) Increasing Aridity Reduces Soil Microbial Diversity and Abundance in Global Drylands. Proceedings of the National Academy of Sciences of the United States of America, 112, 15684-15689.
https://doi.org/10.1073/pnas.1516684112
[15]  Stark, J.M. and Firestone, M.K. (1995) Mechanisms for Soil Moisture Effects on Activity of Nitrifying Bacteria. Applied and Environmental Microbiology, 61, 218-221.
https://doi.org/10.1128/aem.61.1.218-221.1995
[16]  Shao, H.B., Chu, L.Y., Jaleel, C.A., et al. (2008) Wa-ter-Deficit Stress-Induced Anatomical Changes in Higher Plants. Comptes Rendus Biologies, 331, 215-225.
https://doi.org/10.1016/j.crvi.2008.01.002
[17]  Smirnoff, N. (1993) Tansley Review No. 52. The Role of Active Oxygen in the Response of Plants to Water Deficit and Desiccation. New Phytologist, 125, 27-58.
https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
[18]  Bohnert, H.J. and Jensen, R.G. (1996) Strategies for En-gineering Water-Stress Tolerance in Plants. Trends in Biotechnology, 14, 89-97.
https://doi.org/10.1016/0167-7799(96)80929-2
[19]  肖辉林. 森林衰退与全球气候变化[J]. 生态学报, 1994, 14(4): 430-436.
[20]  Sakai, H., Yagi, K., Kobayashi, K. and Kawashima, S. (2001) Rice Carbon Balance under Elevated CO2. New Phytologist, 150, 241-249.
https://doi.org/10.1046/j.1469-8137.2001.00105.x
[21]  李伏生, 康绍忠, 张富仓. 大气CO2浓度和温度升高对作物生理生态的影响[J]. 应用生态学报, 2002, 13(9): 1169-1173.
[22]  孙谷畴, 赵平, 曾小平, 等. 大气CO2浓度升高对香蕉光合作用及光合碳循环过程中叶氮分配的影响[J]. 应用生态学报, 2001, 12(3): 429-434.
[23]  杨惠敏, 王根轩. 干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响[J]. 植物生态学报, 2001, 25(3): 312-316.
[24]  张富仓, 康绍忠, 马清林. 大气CO2浓度升高对棉花生理特性和生长的影响[J]. 应用基础与工程科学学报, 1999, 7(3): 267-272.
[25]  康绍忠, 蔡焕杰, 刘晓明. 大气CO2浓度增加对春小麦水分利用与蒸发蒸腾的影响[J]. 西北农业大学学报, 1995, 23(3): 1-5.
[26]  吴纯新, 蒋朝常. 气候变化动植物物种生存受严重影响[J]. 科学大观园, 2022(12): 20-23.
[27]  黎磊, 陈家宽. 气候变化对野生植物的影响及保护对策[J]. 生物多样性, 2014, 22(5): 549-563.
[28]  Christian, R.R. and Mazzilli, S. (2007) Defining the Coast and Sentinel Ecosystems for Coastal Observations of Global Change. Hydrobiologia, 577, 55-70.
https://doi.org/10.1007/s10750-006-0417-4
[29]  Deng, Z., Ouyang, Y., Xie, X., et al. (2010) The Effects of Pri-mary Process of Global Change on Biological Invasion in Coastal Ecosystem. Biodiversity Science, 18, 605-614.
https://doi.org/10.3724/SP.J.1003.2010.605
[30]  Schaeffer, M., Hare, W., Rahmstorf, S. and Vermeer, M. (2012) Long-Term Sea-Level Rise Implied by 1.5 C and 2 C Warming Levels. Nature Climate Change, 2, 867-870.
https://doi.org/10.1038/nclimate1584
[31]  Perry, J.E. and Atkinson, R.B. (2009) York River Tidal Marshes. Jour-nal of Coastal Research, 10057, 40-49.
https://doi.org/10.2112/1551-5036-57.sp1.40
[32]  郑景云, 葛全胜, 赵会霞. 近40年中国植物物候对气候变化的响应研究[J]. 中国农业气象, 2003, 24(1): 28-32.
[33]  Liu, J.H., Yong, X.H., Han, Q., et al. (2017) Response of Plant Functional Traits to Species Origin and Adaptive Reproduction in Weeds. Plant Biosystems—An International Journal Dealing with All Aspects of Plant Biology, 151, 323-330.
https://doi.org/10.1080/11263504.2016.1174171
[34]  Houghton, R.A. (1995) Land-Use Change and the Carbon Cycle. Global Change Biology, 1, 275-287.
https://doi.org/10.1111/j.1365-2486.1995.tb00026.x
[35]  Fang, J.Y., Tang, Y.H., Lin, J.D., et al. (2000) Global Ecology: Climate Change and Ecological Responses. Chinese Higher Education Press, Beijing.
[36]  Guillaume, T., Holtkamp, A.M., Damris, M., et al. (2016) Soil Degradation in Oil Palm and Rubber Plantations under Land Resource Scarcity. Agriculture, Ecosystems & Environment, 232, 110-118.
https://doi.org/10.1016/j.agee.2016.07.002
[37]  Viana, R.M., Ferraz, J.B.S., Neves Jr., A.F., et al. (2014) Soil Quality Indicators for Different Restoration Stages on Amazon Rainforest. Soil and Tillage Research, 140, 1-7.
https://doi.org/10.1016/j.still.2014.01.005
[38]  Slam, K.R. and Weil, R.R. (2000) Land Use Effects on Soil Quality in a Tropical Forest Ecosystem of Bangladesh. Agriculture, Ecosystems & Environment, 79, 9-16.
https://doi.org/10.1016/S0167-8809(99)00145-0
[39]  Paz-Kagan, T., Shachak, M., Zaady, E. and Karnieli, A. (2014) Evaluation of Ecosystem Responses to Land-Use Change Using Soil Quality and Primary Productivity in a Semi-Arid Area, Israel. Agriculture, Ecosystems & Environment, 193, 9-24.
https://doi.org/10.1016/j.agee.2014.04.024
[40]  Van Straaten, O., Corre, M.D., Wolf, K., et al. (2015) Conversion of Lowland Tropical Forests to Tree Cash Crop Plantations Loses Up to One-Half of Stored Soil Organic Carbon. Pro-ceedings of the National Academy of Sciences of the United States of America, 112, 9956-9960.
https://doi.org/10.1073/pnas.1504628112
[41]  Guillaume, T., Maranguit, D., Murtilaksono, K. and Kuzyakov, Y. (2016) Sensitivity and Resistance of Soil Fertility Indicators to Land-Use Changes: New Concept and Examples from Conversion of Indonesian Rainforest to Plantations. Ecological Indicators, 67, 49-57.
https://doi.org/10.1016/j.ecolind.2016.02.039
[42]  吴溪, 史文娇, 陶福禄. 基于Meta分析的中国森林水源涵养空间分布数据集[J]. 全球变化数据学报(中英文), 2023, 7(1): 8-18, 125-135.
[43]  杨思维, 张德罡, 牛钰杰, 等. 短期放牧对高寒草甸表层土壤入渗和水分保持能力的影响[J]. 水土保持学报, 2016, 30(4): 96-101.
https://doi.org/10.13870/J.Cnki.Stbcxb.2016.04.017
[44]  甘春娟, 郑爽, 陈垚, 等. 氮素在雨水生物滞留系统多介质中的归趋与迁移特性[J]. 山东农业科学, 2019, 51(10): 71-77.
https://doi.org/10.14083/J.Issn.1001-4942.2019.10.014
[45]  Kan, X., Cheng, J., Hu, X., et al. (2019) Effects of Grass and Forests and the Infiltration Amount on Preferential Flow in Karst Regions of China. Water, 11, Article 1634.
https://doi.org/10.3390/w11081634
[46]  王佳珍, 张秋芬, 彭华, 等. 不同土地利用方式下次降雨对土壤含水量深层变化的影响[J]. 水土保持研究, 2023, 30(3): 69-75.
https://doi.org/10.13869/J.Cnki.Rswc.2023.03.039
[47]  Craul, P.J. (1985) A Description of Urban Soils and Their Desired Characteristics. Journal of Arboriculture, 11, 330-339.
https://doi.org/10.48044/jauf.1985.071
[48]  Baik, J.J., Kim, Y.H. and Chun, H.Y. (2001) Dry and Moist Convection Forced by an Urban Heat Island. Journal of Applied Meteorology, 40, 1462-1475.
https://doi.org/10.1175/1520-0450(2001)040<1462:DAMCFB>2.0.CO;2
[49]  Luo, Z., Sun, O.J., Ge, Q., et al. (2007) Phenological Responses of Plants to Climate Change in an Urban Environment. Eco-logical Research, 22, 507-514.
https://doi.org/10.1007/s11284-006-0044-6
[50]  刘孝颖. 放牧强度对山西右玉草地生态系统土壤真菌多样性的影响[D]: [硕士学位论文]. 北京: 中国地质大学, 2020.
https://doi.org/10.27493/D.Cnki.Gzdzy.2020.001418
[51]  李文, 曹文侠, 李小龙, 等. 放牧管理模式对高寒草甸草原土壤养分特征的影响[J]. 草原与草坪, 2016, 36(2): 8-13, 20.
https://doi.org/10.13817/J.Cnki.Cyycp.2016.02.002
[52]  刘树敏. 不同放牧压力下大兴安岭西麓草甸草原群落土壤特征及水分利用变化研究[D]: [硕士学位论文]. 呼和浩特: 内蒙古大学, 2016.
[53]  任继周, 胡自治, 牟新待, 等. 草原的综合顺序分类法及其草原发生学意义[J]. 中国草原, 1980(1): 12-24, 38.
[54]  王云英, 裴薇薇, 辛莹, 等. 放牧对中国北方草地生态系统水分利用效率的影响[J]. 草原与草坪, 2021, 41(4): 49-55.
https://doi.org/10.13817/J.Cnki.Cyycp.2021.04.007
[55]  刘秀梅. 不同放牧强度对荒漠草原土壤特性和地上生物量的影响[J]. 草食家畜, 2017(3): 45-48.
https://doi.org/10.16863/J.Cnki.1003-6377.2017.03.008
[56]  闫瑞瑞, 辛晓平, 王旭, 等. 不同放牧梯度下呼伦贝尔草甸草原土壤碳氮变化及固碳效应[J]. 生态学报, 2014, 34(6): 1587-1595.
[57]  舒锴, 柯浔, 辛莹, 等. 青藏高原多稳态高寒草甸生态系统蒸散特征对比研究[J]. 草原与草坪, 2019, 39(6): 83-88.
https://doi.org/10.13817/J.Cnki.Cyycp.2019.06.012
[58]  王长庭, 王启兰, 景增春, 等. 不同放牧梯度下高寒小嵩草草甸植被根系和土壤理化特征的变化[J]. 草业学报, 2008, 17(5): 9-15.
[59]  杨子凡. 全球旱地1948-2008年温度和降水的变化特征[D]: [硕士学位论文]. 兰州: 兰州大学, 2018.
[60]  宫兆宁, 宫辉力, 邓伟, 等. 浅埋条件下地下水-土壤-植物-大气连续体中水分运移研究综述[J]. 农业环境科学学报, 2006, 25(Z1): 365-373.
[61]  杨建锋, 万书勤. 地下水对作物生长影响研究[J]. 节水灌溉, 2002(2): 36-38.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413