全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Near Infrared Spectroscopy (NIRS) Model-Based Prediction for Protein Content in Cowpea

DOI: 10.4236/ajps.2024.153011, PP. 145-160

Keywords: Cowpea, Germplasm, Protein, Near-Infrared Spectroscopy (NIRS), Partial Least Squares (PLS)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high quality protein for human consumption and livestock. The objective of this work was to develop near-infrared spectroscopy (NIRS) prediction models to estimate protein content in cowpea. A total of 116 cowpea breeding lines with a wide range of protein contents (19.28 % to 32.04%) were selected to build the model using whole seed and ground seed samples. Partial least-squares discriminant analysis (PLS-DA) regression technique with different pre-treatments (derivatives, standard normal variate, and multiplicative scatter correction) were carried out to develop the protein prediction model. Results showed: 1) spectral plots of both the whole seed and ground seed showed higher spectral scatter at higher wavelengths (>1450 nm), 2) data pre-processing affects prediction accuracy for bot whole seed and ground seed samples, 3) prediction using ground seed samples (0.64 < R2 < 0.85) is better than the whole seed (0.33 < R2 < 0.78), and 4) the data pre-processing second derivative with standard normal variate has the best prediction (R2_whole seed = 0.78, R2_ground seed =

References

[1]  De La Peña, T.C. and Pueyo, J.J. (2011) Legumes in the Reclamation of Marginal Soils, from Cultivar and Inoculant Selection to Transgenic Approaches. Agronomy for Sustainable Development, 32, 65-91.
https://doi.org/10.1007/s13593-011-0024-2
[2]  Horneck, D. and Miller, R. (1998) Determination of Total Nitrogen in Plant Tissue. In: Kalra, Y., Ed., Handbook of Reference Methods for Plant Analysis, CRC Press, Boca Raton, 75-83.
[3]  Gonçalves, A., Goufo, P., Barros, A., Domínguez-Perles, R., Trindade, H., Rosa, E.A.S., Ferreira, L. and Rodrigues, M. (2016) Cowpea (Vigna unguiculata L. Walp), a Renewed Multipurpose Crop for a More Sustainable Agri-Food System: Nutritional Advantages and Constraints. Journal of the Science of Food and Agriculture, 96, 2941-2951.
https://doi.org/10.1002/jsfa.7644
[4]  Egbadzor, K.F., Ofori, K., Yeboah, M., Aboagye, L.M., Opoku-Agyeman, M.O., Danquah, E.Y. and Offei, S.K. (2014) Diversity in 113 Cowpea [Vigna unguiculata (L) Walp] Accessions Assessed with 458 SNP Markers. SpringerPlus, 3, Article No. 541.
https://doi.org/10.1186/2193-1801-3-541
[5]  Singh, B. (1997) Recent Advances in Cowpea Breeding.
https://books.google.com/books?hl=en&lr=&id=s_5Y5BFRU1EC&oi=fnd&pg=PA30&dq=
singh+recent+advances+in+cowpea+breeding&ots=YxXTtj7KtU&sig=T92r_BYnh-zizY5NZaA8-i9MRto
[6]  Fang, J., Chao, C.C.T., Roberts, P.A. and Ehlers, J.D. (2007) Genetic Diversity of Cowpea [Vigna unguiculata (L.) Walp.] in Four West African and USA Breeding Programs as Determined by AFLP Analysis. Genetic Resources and Crop Evolution, 54, 1197-1209.
https://doi.org/10.1007/s10722-006-9101-9
[7]  Singh, B.B., Timko, M.P. and Aragao, F.J.L. (2014) Advances in Cowpea Improvement and Genomics. In: Gupta, S., Nadarajan, N., Gupta, D., Eds., Legumes in the Omic Era, Springer, New York, NY, 131-153.
https://link.springer.com/chapter/10.1007/978-1-4614-8370-0_7
[8]  Fery, R.L. (1993) “Bettergreen” Southernpea. HortScience, 28, 62-63.
https://doi.org/10.21273/HORTSCI.28.1.62
[9]  Kushwaha, A. and Kumar, A. (2014) Development of High Protein Biscuits from Cowpea (Vigna unguiculata) Flour. International Journal of Basic and Applied Agricultural Research, 12, 288-291.
[10]  Fatokun, C.A., Boukar, O. and Muranaka, S. (2012) Evaluation of Cowpea (Vigna unguiculata (L.) Walp.) Germplasm Lines for Tolerance to Drought. Plant Genetic Resources, 10, 171-176.
https://doi.org/10.1017/S1479262112000214
[11]  Agbicodo, E.M., Fatokun, C.A., Bandyopadhyay, R., Wydra, K., Diop, N.N., Muchero, W., Ehlers, J.D., Roberts, P.A., Close, T.J., Visser, R.G.F. and van der Linden, C.G. (2010) Identification of Markers Associated with Bacterial Blight Resistance Loci in Cowpea [Vigna unguiculata (L.) Walp.]. Euphytica, 175, 215-226.
https://doi.org/10.1007/s10681-010-0164-5
[12]  Avanza, M.V., Chaves, M.G., Acevedo, B.A. and Añón, M.C. (2012) Functional Properties and Microstructure of Cowpea Cultivated in North-East Argentina. LWT, 49, 123-130.
https://doi.org/10.1016/j.lwt.2012.04.015
[13]  Vermeulen, S.J., Campbell, B.M. and Ingram, J.S.I. (2012) Climate Change and Food Systems. Annual Review Environmental Resources, 37, 195-222.
https://doi.org/10.1146/annurev-environ-020411-130608
[14]  Schmidhuber, J. and Tubiello, F.N. (2007) Global Food Security under Climate Change. Proceedings of the National Academy of Sciences of the United States of America, 104, 19703-19708.
https://doi.org/10.1073/pnas.0701976104
[15]  Kumar, B. and Bhalothia, P. (2020) Orphan Crops for Future Food Security. Journal of Biosciences, 45, Article No. 131.
https://doi.org/10.1007/s12038-020-00107-5
[16]  Tadele, Z. (2019) Orphan Crops: Their Importance and the Urgency of Improvement. Planta, 250, 677-694.
https://doi.org/10.1007/s00425-019-03210-6
[17]  Talabi, A.O., Vikram, P., Thushar, S., Rahman, H., Ahmadzai, H., Nhamo, N., Shahid, M. and Singh, R.K. (2022) Orphan Crops: A Best Fit for Dietary Enrichment and Diversification in Highly Deteriorated Marginal Environments. Frontiers in Plant Science, 13, Article 839704.
https://doi.org/10.3389/fpls.2022.839704
[18]  Alphonsus K.B. and Felix D.D. (2012) Elevated Concentrations of Dietarily-Important Trace Elements and Macronutrients in Edible Leaves and Grain of 27 Cowpea (Vigna unguiculata L. Walp.) Genotypes: Implications for Human Nutrition and Health. Food and Nutrition Sciences, 3, 377-386.
https://doi.org/10.4236/fns.2012.33054
[19]  Chivenge, P., Mabhaudhi, T., Modi, A.T. and Mafongoya, P. (2015) The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. International Journal of Environmental Research and Public Health, 12, Pages 5685-5711.
https://doi.org/10.3390/ijerph120605685
[20]  Boukar, O., Muranaka, S., Fatokun, C., Shono, M. and Ishikawa, H. (2017) Development of Calibration Model to Predict Nitrogen Content in Single Seeds of Cowpea (Vigna unguiculata) Using Near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 25, 211-214.
https://doi.org/10.3390/ijerph120605685
[21]  Bartwal, A., John, R., Padhi, S.R., Suneja, P., Bhardwaj, R., Gayacharan Wankhede, D.P. and Archak, S. (2023) NIR Spectra Processing for Developing Efficient Protein Prediction Model in Mungbean. Journal of Food Composition and Analysis, 116, Article ID: 105087.
https://doi.org/10.1016/j.jfca.2022.105087
[22]  Wang, J., Liu, H. and Ren, G. (2014) Near-Infrared Spectroscopy (NIRS) Evaluation and Regional Analysis of Chinese Faba Bean (Vicia faba L.). The Crop Journal, 2, 28-37.
https://doi.org/10.1016/j.cj.2013.10.001
[23]  Ferreira, D.S., Pallone, J.A.L. and Poppi, R.J. (2013) Fourier Transform Near-Infrared Spectroscopy (FT-NIRS) Application to Estimate Brazilian Soybean [Glycine max (L.) Merril] Composition. Food Research International, 51, 53-58.
https://doi.org/10.1016/j.foodres.2012.09.015
[24]  Iyer, L., Meares, C., Black, R.G., Brouwer, J.B. and Flinn, P.C. (1998) Estimating the Food Processing Characteristics of Pulses by Near Infrared Spectroscopy, Using Ground or Whole Samples. Journal of Near Infrared Spectroscopy, 6, 213-220.
https://doi.org/10.1255/jnirs.139
[25]  Asghar, M., Akhtar, K., Abbas, G., Rizwan, M., Iqbal, M., Idrees, M., Ali, S., Aslam, M., Aziz-ur-Rehman, M., Saleem, U. and Khan, M. (2018) Identification of Multiple Sources of Resistance in Lentil against Some Potential Fungal Diseases. Pakistan Journal of Agricultural Sciences, 55, 875-880.
[26]  Weng, Y., Shi, A., Ravelombola, W.S., Yang, W., Qin, J., Motes, D., Moseley, D.O. and Chen, P. (2017) A Rapid Method for Measuring Seed Protein Content in Cowpea (Vigna unguiculata (L.) Walp). American Journal of Plant Sciences, 8, 2387-2396.
https://doi.org/10.4236/ajps.2017.810161
[27]  John, R., Bhardwaj, R., Jeyaseelan, C., Bollinedi, H., Singh, N., Harish, G.D., Singh, R., Nath, D.J., Arya, M., Sharma, D., Singh, S., Joseph John, K., Latha, M., Rana, J.C., Ahlawat, S.P. and Kumar, A. (2022) Germplasm Variability-Assisted Near Infrared Reflectance Spectroscopy Chemometrics to Develop Multi-Trait Robust Prediction Models in Rice. Frontiers in Nutrition, 9, Article 946255.
https://doi.org/10.3389/fnut.2022.946255
[28]  Tomar, M., Bhardwaj, R., Kumar, M., Singh, S.P., Krishnan, V., Kansal, R., Verma, R., Yadav, V.K., dahuja, A., Ahlawat, S.P., Chand Rana, J., Satyavathi, C.T., Praveen, S. and Sachdev, A. (2021) Development of NIR Spectroscopy Based Prediction Models for Nutritional Profiling of Pearl Millet (Pennisetum glaucum (L.)) R.Br: A Chemometrics Approach. LWT, 149, Article ID: 111813.
https://doi.org/10.1016/j.lwt.2021.111813
[29]  Masithoh, R.E., Amanah, H.Z., Yoon, W.S., Joshi, R. and Cho, B.K. (2021) Determination of Protein and Glucose of Tuber and Root Flours Using NIR and MIR Spectroscopy. Infrared Physics & Technology, 113, Article ID: 103577.
https://doi.org/10.1016/j.infrared.2020.103577
[30]  Towett, E.K., Alex, M., Shepherd, K.D., Polreich, S., Aynekulu, E., Maass, B.L., Erick Towett, C.K. and Agroforestry Centre, W. (2013) Applicability of Near-Infrared Reflectance Spectroscopy (NIRS) for Determination of Crude Protein Content in Cowpea (Vigna unguiculata) Leaves. Food Science & Nutrition, 1, 45-53.
https://doi.org/10.1002/fsn3.7
[31]  Bokobza, L. (2002) Near-Infrared Spectroscopy: Principles, Instruments, Applications. Wiley VCH, Weinheim.
[32]  Quinones, M., Martinez, L., Herrera, S. and Laredo, R. (2018) Near-Infrared Spectroscopy (NIRS) Applied to Legume Analysis: A Review. International Journal of Engineering and Innovative Technology, 8, 29-40.
[33]  Agelet, L.E. and Hurburgh, C.R. (2010) A Tutorial on Near Infrared Spectroscopy and Its Calibration. Critical Reviews in Analytical Chemistry, 40, 246-260.
https://doi.org/10.1080/10408347.2010.515468
[34]  Nicolaï, B.M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K.I. and Lammertyn, J. (2007) Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest Biology and Technology, 46, 99-118.
https://doi.org/10.1016/j.postharvbio.2007.06.024
[35]  Oliveira, J.T.A., Andrade, N.C., Martins-Miranda, A.S., Soares, A.A., Gondim, D.M.F., Araújo-Filho, J.H., Freire-Filho, F.R. and Vasconcelos, I.M. (2012) Differential Expression of Antioxidant Enzymes and PR-Proteins in Compatible and Incompatible Interactions of Cowpea (Vigna unguiculata) and the Root-Knot Nematode Meloidogyne Incognita. Plant Physiology and Biochemistry, 51, 145-152.
https://doi.org/10.1016/j.plaphy.2011.10.008
[36]  Williams, P. and Norris, K. (1987) Near-Infrared Technology in the Agricultural and Food Industries. American Association of Cereal Chemists, 11, 123-145.
https://www.cabdirect.org/cabdirect/abstract/19892442443
[37]  Han, Z., Cai, S., Zhang, X., Qian, Q., Huang, Y., Dai, F. and Zhang, G. (2017) Development of Predictive Models for Total Phenolics and Free P-Coumaric Acid Contents in Barley Grain by Near-Infrared Spectroscopy. Food Chemistry, 227, 342-348.
https://doi.org/10.1016/j.foodchem.2017.01.063
[38]  Jose, F., Cruz, R. and Almeida, M. (2014) Growth, Nutritional Status and Nitrogen Metabolism in “Vigna unguiculata” (L.) Walp Is Affected by Aluminum. Australian Journal of Crop Science, 8, 1132-1139.
https://search.informit.org/doi/abs/10.3316/INFORMIT.566862068222826
[39]  Moros, J., Garrigues, S. and de la Guardia, M. (2010) Vibrational Spectroscopy Provides a Green Tool for Multi-Component Analysis. TrAC Trends in Analytical Chemistry, 29, 578-591.
https://doi.org/10.1016/j.trac.2009.12.012
[40]  Blanco, M. and Villarroya, I. (2002) NIR Spectroscopy: A Rapid-Response Analytical Tool. TrAC Trends in Analytical Chemistry, 21, 240-250.
https://doi.org/10.1016/S0165-9936(02)00404-1
[41]  Williams, P., Manley, M. and Antoniszyn, J. (2019) Near Infrared Technology: Getting the Best out of Light. Africa Sun Media, Stellenbosch.
https://doi.org/10.18820/9781928480310
https://books.google.com/books?hl=en&lr=&id=xSSyDwAAQBAJ&oi=fnd&pg=PP6&dq=42.%09Williams,+P.%3B+Manley,+
M.%3B++Antoniszyn,+J.+Near+infrared+technology:+Getting+the+best+out+of+light.+African+Sun+Media.+2019.&ots=
DK5TxCrEFm&sig=lC89IZnCaR3eW6ovlvlg93qGQwM
[42]  Hang, J., Shi, D., Neufeld, J., Bett, K.E. and House, J.D. (2022) Prediction of Protein and Amino Acid Contents in Whole and Ground Lentils Using Near-Infrared Reflectance Spectroscopy. LWT, 165, Article ID: 113669.
https://doi.org/10.1016/j.lwt.2022.113669
[43]  Rantanen, J., Räsänen, E., Tenhunen, J., Känsäkoski, M., Mannermaa, J.P. and Yliruusi, J. (2000) In-Line Moisture Measurement during Granulation with a Four-Wavelength near Infrared Sensor: An Evaluation of Particle Size and Binder Effects. European Journal of Pharmaceutics and Biopharmaceutics, 50, 271-276.
https://doi.org/10.1016/S0939-6411(00)00096-5
[44]  Wang, D., Dowell, F.E. and Lacey, R.E. (1999) Single Wheat Kernel Size Effects on Near-Infrared Reflectance Spectra and Color Classification. Cereal Chemistry, 76, 34-37.
https://doi.org/10.1094/CCHEM.1999.76.1.34
[45]  Flinn, L., Meares, C., Black, R.G., Brouwer, J.B. and Flinn, P.C. (1998) Estimating the Food Processing Characteristics of Pulses by near Infrared Spectroscopy, Using Ground or Whole Samples. Journal of Near Infrared Spectroscopy, 6, 213-220.
https://opg.optica.org/abstract.cfm?uri=jnirs-6-1-213
https://doi.org/10.1255/jnirs.139
[46]  Urban, J. and Hybl, M. (1999) The Use of NIR Method Method for Evaluation of the Pea (Pisum sativum L.) Quality. Rostlinna Vyroba, 45, 41-43.
[47]  Revilla, I., Lastras, C., González-Martín, M.I., Vivar-Quintana, A.M., Morales-Corts, R., Gómez-Sánchez, M.A. and Pérez-Sánchez, R. (2019) Predicting the Physicochemical Properties and Geographical ORIGIN of Lentils Using near Infrared Spectroscopy. Journal of Food Composition and Analysis, 77, 84-90.
https://doi.org/10.1016/j.jfca.2019.01.012
[48]  Shi, H. and Yu, P. (2017) Comparison of Grating-Based Near-Infrared (NIR) and Fourier Transform Mid-Infrared (ATR-FT/MIR) Spectroscopy Based on Spectral Preprocessing and Wavelength Selection for the Determination of Crude Protein and Moisture Content in Wheat. Food Control, 82, 57-65.
https://doi.org/10.1016/j.foodcont.2017.06.015

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133