全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Density Functional Calculations of the Mechanical, Electronic and Dynamical Properties of Antiperovskite Ca3BO (B = Pb, Ge, Sn)

DOI: 10.4236/ojm.2024.141001, PP. 1-12

Keywords: Antiperovskite, Elastic Constants, Generalized Gradient Approximation

Full-Text   Cite this paper   Add to My Lib

Abstract:

An analysis of mechanical, electronic and dynamical properties of antiperovskite Ca3BO (B = Pb, Ge, Sn) in cubic phase space group Pm-3m (221) has been studied using first principle density functional theory (DFT). Ground state energy computation was done using the Projector Augmented Wave (PAW) Pseudo Potentials and the Plane Wave (PW) basis set. The Generalized Gradient Approximation (GGA) was used for the exchange correlation. The open source code QUANTUM ESPRESSO (QE) was used in this study in which plane wave basis sets are applied for the expansion of the electronic structure wave function. Thermo_pw as a post-processing code was used for the computation of mechanical properties including bulk modulus and elastic constants with their derivatives. The lattice parameters are here calculated to be 4.87 Å, 4.86 Å and 4.84 Å for Ca3BO (B = Pb, Ge, Sn) respectively which compares well with other works. This also shows that the three crystals are similar in size and in most of their properties. In addition to this, projected density of states and band structure are also computed both showing that these materials are of semi-metallic nature and are stable in cubic phase. Phonon modes at gamma are also reported.

References

[1]  Kaur, T. and Sinha, M.M. (2021) Probing Thermoelectric Properties of High Potential Ca3PbO: An Ab Initio Study. IOP Conference Series: Materials Science and Engineering, 1033, Article ID: 012080.
https://doi.org/10.1088/1757-899X/1033/1/012080
[2]  He, T., Huang, Q., Ramirez, A.P., et al. (2001) Superconductivity in the Non-Oxide Perovskite MgCNi3. Nature, 411, 54-56.
https://www.nature.com/articles/35075014
https://doi.org/10.1038/35075014
[3]  Henriques, J.M., et al. (2008) First-Principles Calculations of Structural, Electronic and Optical Properties of Orthorhombic CaPbO3. Journal of Physics D: Applied Physics, 41, 065405.
[4]  Xu, G., Weng, H., Wang, Z., Dai, X. and Fang, Z. (2011) Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr2Se4. Physical Review Letters, 107, Article ID: 186806.
https://doi.org/10.1103/PhysRevLett.107.186806
[5]  Wang, Z., Weng, H., Wu, Q., Dai, X. and Fang, Z. (2013) Three-Dimensional Dirac Semimetal and Quantum Transport in Cd3As2. Physical Review B, 88, Article ID: 125427.
https://doi.org/10.1103/PhysRevB.88.125427
[6]  Perdew, P., Ernzerhof, M. and Burke, K. (1996) Rationale for Mixing Exact Exchange with Density Functional Approximations. The Journal of Chemical Physics, 105, 9982-9985.
https://doi.org/10.1063/1.472933
[7]  Giannozzi, P., et al. (2009) QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter, 21, Article ID: 395502.
https://doi.org/10.1088/0953-8984/21/39/395502
[8]  Kohn, W. and Sham, L. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review Journals Archive, 140, A1133-A1138.
https://doi.org/10.1103/PhysRev.140.A1133
[9]  Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188-5192.
https://doi.org/10.1103/PhysRevB.13.5188
[10]  Burkov, A.A., Hook, M.D. and Balents, L. (2011) Topological Nodal Semimetals. Physical Review B, 84, Article ID: 235126.
https://doi.org/10.1103/PhysRevB.84.235126
[11]  Chung, D.Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M. andKanatzidis, M.G. (2000) CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications. Science, 287, 1024-1027.
https://doi.org/10.1126/science.287.5455.1024
[12]  Obata, Y., Yukawa, R., Horiba, K., Kumigashira, H., Toda, Y., Matsuishi, S. and Hosono, H. (2017) ARPES Studies of the Inverse Perovskite Ca3PbO: Experimental Confirmation of a Candidate 3D Dirac Fermion System. Physical Review B, 96, Article ID: 155109.
https://doi.org/10.1103/PhysRevB.96.155109
[13]  Burganov, B., Adamo, C., Mulder, A., Uchida, M., King, P.D.C., Harter, J.W. and Shen, K.M. (2016) Strain Control of Fermiology and Many-Body Interactions in Two-Dimensional Ruthenates. Physical Review Letters, 116, Article ID: 197003.
https://doi.org/10.1103/PhysRevLett.116.197003
[14]  Kariyado, T. and Ogata, M. (2011) Three-Dimensional Dirac Electrons at the Fermi Energy in Cubic Inverse Perovskites: Ca3PbO and Its Family. Journal of the Physical Society of Japan, 80, Article ID: 083704.
https://doi.org/10.1143/JPSJ.80.083704
[15]  Murnaghan, F.D. (1994) The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences of the United States of America, 30, 244-247.
https://doi.org/10.1073/pnas.30.9.244
[16]  Born, M. and Huang, K. (1956) Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford.
[17]  Mayer, B., Anton, H., Bott, E., et al. (2003) Ab-initio Calculation of the Elastic Constants and Thermal Expansion Coefficients of Laves Phases. Intermetallics, 11, 23-32.
https://doi.org/10.1016/S0966-9795(02)00127-9
[18]  Widera, A. and Schäfer, H. (1980) übergangsformen zwischen zintlphasen und echten salzen: Dieverbindungen A3BO (MIT A = Ca Sr Ba und B = Sn Pb) Mater. Materials Research Bulletin, 15, 1805-1809.
https://doi.org/10.1016/0025-5408(80)90200-7
[19]  Haddadi, K., Bouhemadou, A., Louail, L. and Bin, O.S. (2010) Inverse-Perovskite Oxides Ca3 EO with E = Si, Ge, Sn, Pb: Structural, Elastic and Thermal Properties. Solid State Communications, 150, 1995-2000.
https://doi.org/10.1016/j.ssc.2010.08.021
[20]  Nyawere, P.W.O., Makau, N.W. and Amolo, G.O. (2014) First-Principles Calculations of the Elastic Constants of the Cubic, Orthorhombic and Hexagonal Phases of BaF2. Physica B: Condensed Matter, 434, 122-128.
https://doi.org/10.1016/j.physb.2013.10.051
[21]  Mogulkoc, et al. (2018) Electronic Structure and Optical Properties of Novel Monolayer Gallium Nitride and Boron Phosphide Heterobilayers. International Journal of Biosensors & Bioelectronics, 4, 70-75.
[22]  Kaur, T. and Sinha, M.M. (2021) Probing Thermoelectric Properties of High Potential Ca3PbO: An Ab Initio Study. IOP Conference Series: Materials Science and Engineering, 1033, Article ID: 012080.
https://doi.org/10.1088/1757-899X/1033/1/012080
[23]  Rohr, C. (2010) Crystal Structure of Calcium Germanide Oxide, Ca3GeO. Zeitschrift für Kristallographie-Crystalline Materials, 210, 781.
[24]  Batool, J., Alay-e-Abbas, S.M. and Amin, N. (2018) Thermodynamic, Electronic, and Magnetic Properties of Intrinsic Vacancy Defects in Antiperovskite Ca3SnO. Journal of Applied Physics, 123, Article ID: 161516.
https://doi.org/10.1063/1.4994998
[25]  Cherred, D., Maouche, M., Maanmache, M. and Krache, L. (2011) Influence of Valence Electron Concentration on Elastic, Electronic and Optical Properties of the Alkaline-Earth Tin Oxides A3SnO (A=Ca, Sr and Ba): A Comparative Study with ASnO3 Compounds. Physica B, 406, 2714-2722.
[26]  Wang, S.Q. and Ye, H.Q. (2003) Ab Initio Elastic Constants for the Lonsdaleite Phases of C, Si and Ge. Journal of Physics: Condensed Matter, 15, Article 5307.
https://doi.org/10.1088/0953-8984/15/30/312
[27]  Rajeswarapalanichamiy, R., Priyanga, G.S., Cinthia, A.J. and Iyakutti, K. (2015) Structural stability, electronic structure and mechanical properties of ZnN and CdN: A first principles study. Computational Materials Science, 99, 117-124.
https://doi.org/10.1016/j.commatsci.2014.12.012

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413