全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Advances in the Mechanisms of Hemorrhagic Transformation and Therapeutic Agents after Intravenous Thrombolysis in Ischemic Stroke

DOI: 10.4236/ym.2024.81004, PP. 29-40

Keywords: Hemorrhagic Transformation, Tissue-Type Fibrinogen Activator, Acute Ischemic Stroke, Blood-Brain Barrier

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ischemic stroke is an important disease leading to death and disability for all human beings, and the key to its treatment lies in the early opening of obstructed vessels and restoration of perfusion to the local infarcted area. Intravenous thrombolysis with tissue plasminogen activator (tPA) is one of the effective therapies to achieve revascularization, but it faces strict indications with a narrow therapeutic time window, and significantly increases the incidence of hemorrhagic transformation, HT, after reperfusion of the infarcted foci, which greatly reduces the incidence of patients with ischemic stroke. which significantly increases the incidence of hemorrhagic transformation (HT) after reperfusion of the infarcted focus, greatly reducing patient utilization and clinical benefit. Since the mechanism of HT has not been fully elucidated, and the related molecular mechanisms are complex and interactive, there is no specific and effective therapy to avoid the occurrence of HT. In this article, we focus on the research progress on the mechanism of HT after tPA intravenous thrombolysis in ischemic stroke patients from the aspects of vascular integrity disruption, oxidative stress, and neuroinflammatory response and the corresponding therapeutic strategies, in order to improve the safety and prognosis of tPA intravenous thrombolysis in the clinic.

References

[1]  Liu, S., Feng, X., Jin, R. and Li, G. (2018) Tissue Plasminogen Activator-Based Nanothrombolysis for Ischemic Stroke. Expert Opinion on Drug Delivery, 15, 173-184.
https://doi.org/10.1080/17425247.2018.1384464
[2]  Yaghi, S., Willey, J.Z., Cucchiara, B., Goldstein, J.N., Gonzales, N.R., Khatri, P., et al. (2017) Treatment and Outcome of Hemorrhagic Transformation after Intravenous Alteplase in Acute Ischemic Stroke: A Scientific Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 48, e343-e361.
https://doi.org/10.1161/STR.0000000000000152
[3]  Caldeira, M.V., Salazar, I.L., Curcio, M., Canzoniero, L.M. and Duarte, C.B. (2014) Role of the Ubiquitin-Proteasome System in Brain Ischemia: Friend or Foe? Progress in Neurobiology, 112, 50-69.
https://doi.org/10.1016/j.pneurobio.2013.10.003
[4]  Jeanneret, V. and Yepes, M. (2017) Tissue-Type Plasminogen Activator Is a Homeostatic Regulator of Synaptic Function in the Central Nervous System. Neural Regeneration Research, 12, 362-365.
https://doi.org/10.4103/1673-5374.202924
[5]  Clark, W.M., Wissman, S., Albers, G.W., Jhamandas, J.H., Madden, K.P. and Hamilton, S. (1999) Recombinant Tissue-Type Plasminogen Activator (Alteplase) for Ischemic Stroke 3 to 5 Hours after Symptom Onset. The Atlantis Study: A Randomized Controlled Trial. JAMA, 282, 2019-2026.
https://doi.org/10.1001/jama.282.21.2019
[6]  Gautier, S., Petrault, O., Gele, P., Laprais, M., Bastide, M., Bauters, A., et al. (2003) Involvement of Thrombolysis in Recombinant Tissue Plasminogen Activator-Induced Cerebral Hemorrhages and Effect on Infarct Volume and Postischemic Endothelial Function. Stroke, 34, 2975-2979.
https://doi.org/10.1161/01.STR.0000101914.62066.7B
[7]  Teng, R.S.Y., Tan, B.Y.Q., Miny, S., Syn, N.L., Ho, A.F.W., Ngiam, N.J.H., et al. (2019) Effect of Pretreatment Blood Pressure on Outcomes in Thrombolysed Acute Ischemic Stroke Patients: A Systematic Review and Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases, 28, 906-919.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.12.008
[8]  Alvarez-Sabín, J., Molina, C.A., Ribó, M., Arenillas, J.F., Montaner, J., Huertas, R., et al. (2004) Impact of Admission Hyperglycemia on Stroke Outcome after Thrombolysis: Risk Stratification in Relation to Time to Reperfusion. Stroke, 35, 2493-2498.
https://doi.org/10.1161/01.STR.0000143728.45516.c6
[9]  Satumanatpan, N., Tonpho, W., Thiraratananukulchai, N., Chaichanamongkol, P., Lekcharoen, P. and Thiankhaw, K. (2022) Factors Associated with Unfavorable Functional Outcomes after Intravenous Thrombolysis in Patients with Acute Ischemic Stroke. International Journal of General Medicine, 15, 3363-3373.
https://doi.org/10.2147/IJGM.S362116
[10]  Zhang, S., Liao, X.J., Wang, J., Shen, Y., Shi, H.F., Zou, Y., et al. (2022) Temporal Alterations in Pericytes at the Acute Phase of Ischemia/Reperfusion in the Mouse Brain. Neural Regeneration Research, 17, 2247-2252.
https://doi.org/10.4103/1673-5374.336876
[11]  Yang, Y. and Rosenberg, G.A. (2011) Blood-Brain Barrier Breakdown in Acute and Chronic Cerebrovascular Disease. Stroke, 42, 3323-3328.
https://doi.org/10.1161/STROKEAHA.110.608257
[12]  Saleem, S., Wang, D., Zhao, T., Sullivan, R.D. and Reed, G.L. (2021) Matrix Metalloproteinase-9 Expression Is Enhanced by Ischemia and Tissue Plasminogen Activator and Induces Hemorrhage, Disability and Mortality in Experimental Stroke. Neuroscience, 460, 120-129.
https://doi.org/10.1016/j.neuroscience.2021.01.003
[13]  Lu, A., Suofu, Y., Guan, F., Broderick, J.P., Wagner, K.R. and Clark, J.F. (2013) Matrix Metalloproteinase-2 Deletions Protect against Hemorrhagic Transformation after 1 H of Cerebral Ischemia and 23 H of Reperfusion. Neuroscience, 253, 361-367.
https://doi.org/10.1016/j.neuroscience.2013.08.068
[14]  Liu, J., Jin, X., Liu, K.J. and Liu, W. (2012) Matrix Metalloproteinase-2-Mediated Occludin Degradation and Caveolin-1-Mediated Claudin-5 Redistribution Contribute to Blood-Brain Barrier Damage in Early Ischemic Stroke Stage. Journal of Neuroscience, 32, 3044-3057.
https://doi.org/10.1523/JNEUROSCI.6409-11.2012
[15]  Pan, R., Yu, K., Weatherwax, T., Zheng, H., Liu, W. and Liu, K.J. (2017) Blood Occludin Level as a Potential Biomarker for Early Blood Brain Barrier Damage Following Ischemic Stroke. Scientific Reports, 7, Article No. 40331.
https://doi.org/10.1038/srep40331
[16]  Yuan, S., Li, W., Hou, C., Kang, H., Ma, Q., Ji, X., et al. (2021) Serum Occludin Level Combined with Nihss Score Predicts Hemorrhage Transformation in Ischemic Stroke Patients with Reperfusion. Frontiers in Cellular Neuroscience, 15, Article ID: 714171.
https://doi.org/10.3389/fncel.2021.714171
[17]  Wang, L., Wei, C., Deng, L., Wang, Z., Song, M., Xiong, Y., et al. (2018) The Accuracy of Serum Matrix Metalloproteinase-9 for Predicting Hemorrhagic Transformation after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases, 27, 1653-1665.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.01.023
[18]  Challa, S.R., Nalamolu, K.R., Fornal, C.A., Mohandass, A., Mussman, J.P., Schaibley, C., et al. (2022) The Interplay between Mmp-12 and T-Pa in the Brain after Ischemic Stroke. Neurochemistry International, 161, Article ID: 105436.
https://doi.org/10.1016/j.neuint.2022.105436
[19]  Allen, C.L. and Bayraktutan, U. (2009) Oxidative Stress and Its Role in the Pathogenesis of Ischaemic Stroke. International Journal of Stroke, 4, 461-470.
https://doi.org/10.1111/j.1747-4949.2009.00387.x
[20]  Li, H., Wang, Y., Feng, D., Liu, Y., Xu, M., Gao, A., et al. (2014) Alterations in the Time Course of Expression of the Nox Family in the Brain in a Rat Experimental Cerebral Ischemia and Reperfusion Model: Effects of Melatonin. Journal of Pineal Research, 57, 110-119.
https://doi.org/10.1111/jpi.12148
[21]  Tang, X.N., Zheng, Z., Giffard, R.G. and Yenari, M.A. (2011) Significance of Marrow-Derived Nicotinamide Adenine Dinucleotide Phosphate Oxidase in Experimental Ischemic Stroke. Annals of Neurology, 70, 606-615.
https://doi.org/10.1002/ana.22476
[22]  Kuhn, H., Banthiya, S. and van Leyen, K. (2015) Mammalian Lipoxygenases and Their Biological Relevance. Biochimica et Biophysica Acta, 1851, 308-330.
https://doi.org/10.1016/j.bbalip.2014.10.002
[23]  Liu, Y., Zheng, Y., Karatas, H., Wang, X., Foerch, C., Lo, E.H., et al. (2017) 12/15-Lipoxygenase Inhibition or Knockout Reduces Warfarin-Associated Hemorrhagic Transformation after Experimental Stroke. Stroke, 48, 445-451.
https://doi.org/10.1161/STROKEAHA.116.014790
[24]  Xing, Y., Guo, Z.N., Yan, S., Jin, H., Wang, S. and Yang, Y. (2014) Increased Globulin and Its Association with Hemorrhagic Transformation in Patients Receiving Intra-Arterial Thrombolysis Therapy. Neuroscience Bulletin, 30, 469-476.
https://doi.org/10.1007/s12264-013-1440-x
[25]  Carbone, F., Vuilleumier, N., Bertolotto, M., Burger, F., Galan, K., Roversi, G., et al. (2015) Treatment with Recombinant Tissue Plasminogen Activator (R-Tpa) Induces Neutrophil Degranulation in Vitro via Defined Pathways. Vascular Pharmacology, 64, 16-27.
https://doi.org/10.1016/j.vph.2014.11.007
[26]  Maestrini, I., Strbian, D., Gautier, S., Haapaniemi, E., Moulin, S., Sairanen, T., et al. (2015) Higher Neutrophil Counts before Thrombolysis for Cerebral Ischemia Predict Worse Outcomes. Neurology, 85, 1408-1416.
https://doi.org/10.1212/WNL.0000000000002029
[27]  Gori, A.M., Giusti, B., Piccardi, B., Nencini, P., Palumbo, V., Nesi, M., et al. (2017) Inflammatory and Metalloproteinases Profiles Predict Three-Month Poor Outcomes in Ischemic Stroke Treated with Thrombolysis. Journal of Cerebral Blood Flow & Metabolism, 37, 3253-3261.
https://doi.org/10.1177/0271678X17695572
[28]  Gong, P., Liu, Y., Gong, Y., Chen, G., Zhang, X., Wang, S., et al. (2021) The Association of Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio, and Lymphocyte to Monocyte Ratio with Post-Thrombolysis Early Neurological Outcomes in Patients with Acute Ischemic Stroke. Journal of Neuroinflammation, 18, Article No. 51.
https://doi.org/10.1186/s12974-021-02090-6
[29]  Sun, Y., Chen, X., Zhang, X., Shen, X., Wang, M., Wang, X., et al. (2017) Β2-Adrenergic Receptor-Mediated Hif-1α Upregulation Mediates Blood Brain Barrier Damage in Acute Cerebral Ischemia. Frontiers in Molecular Neuroscience, 10, Article No. 257.
https://doi.org/10.3389/fnmol.2017.00257
[30]  Kong, L., Ma, Y., Wang, Z., Liu, N., Ma, G., Liu, C., et al. (2021) Inhibition of Hypoxia Inducible Factor 1 by Yc-1 Attenuates Tissue Plasminogen Activator Induced Hemorrhagic Transformation by Suppressing Hmgb1/Tlr4/Nf-κb Mediated Neutrophil Infiltration in Thromboembolic Stroke Rats. International Immunopharmacology, 94, Article ID: 107507.
https://doi.org/10.1016/j.intimp.2021.107507
[31]  Su, E.J., Fredriksson, L., Geyer, M., Folestad, E., Cale, J., Andrae, J., et al. (2008) Activation of Pdgf-Cc by Tissue Plasminogen Activator Impairs Blood-Brain Barrier Integrity during Ischemic Stroke. Nature Medicine, 14, 731-737.
https://doi.org/10.1038/nm1787
[32]  Siao, C.J., Fernandez, S.R. and Tsirka, S.E. (2003) Cell Type-Specific Roles for Tissue Plasminogen Activator Released by Neurons or Microglia after Excitotoxic Injury. Journal of Neuroscience, 23, 3234-3242.
https://doi.org/10.1523/JNEUROSCI.23-08-03234.2003
[33]  Cheon, S.Y., Kim, S.Y., Kam, E.H., Lee, J.H., Kim, J.M., Kim, E.J., et al. (2017) Isoflurane Preconditioning Inhibits the Effects of Tissue-Type Plasminogen Activator on Brain Endothelial Cell in an in Vitro Model of Ischemic Stroke. International Journal of Medical Sciences, 14, 425-433.
https://doi.org/10.7150/ijms.18037
[34]  Roncal, C., Martinez de Lizarrondo, S., Salicio, A., Chevilley, A., Rodriguez, J.A., Rosell, A., et al. (2017) New Thrombolytic Strategy Providing Neuroprotection in Experimental Ischemic Stroke: Mmp10 Alone or in Combination with Tissue-Type Plasminogen Activator. Cardiovascular Research, 113, 1219-1229.
https://doi.org/10.1093/cvr/cvx069
[35]  Murata, Y., Rosell, A., Scannevin, R.H., Rhodes, K.J., Wang, X. and Lo, E.H. (2008) Extension of the Thrombolytic Time Window with Minocycline in Experimental Stroke. Stroke, 39, 3372-3377.
https://doi.org/10.1161/STROKEAHA.108.514026
[36]  Li, Q., Han, X., Lan, X., Hong, X., Li, Q., Gao, Y., et al. (2017) Inhibition of Tpa-Induced Hemorrhagic Transformation Involves Adenosine A2b Receptor Activation after Cerebral Ischemia. Neurobiology of Disease, 108, 173-182.
https://doi.org/10.1016/j.nbd.2017.08.011
[37]  Hu, Y., Zheng, Y., Wang, T., Jiao, L. and Luo, Y. (2022) Vegf, a Key Factor for Blood Brain Barrier Injury after Cerebral Ischemic Stroke. Aging and Disease, 13, 647-654.
https://doi.org/10.14336/AD.2021.1121
[38]  Kanazawa, M., Igarashi, H., Kawamura, K., Takahashi, T., Kakita, A., Takahashi, H., et al. (2011) Inhibition of Vegf Signaling Pathway Attenuates Hemorrhage after Tpa Treatment. Journal of Cerebral Blood Flow & Metabolism, 31, 1461-1474.
https://doi.org/10.1038/jcbfm.2011.9
[39]  Yagi, K., Kitazato, K.T., Uno, M., Tada, Y., Kinouchi, T., Shimada, K., et al. (2009) Edaravone, a Free Radical Scavenger, Inhibits Mmp-9-Related Brain Hemorrhage in Rats Treated with Tissue Plasminogen Activator. Stroke, 40, 626-631.
https://doi.org/10.1161/STROKEAHA.108.520262
[40]  Chen, H., Guan, B., Chen, X., Chen, X., Li, C., Qiu, J., et al. (2018) Baicalin Attenuates Blood-Brain Barrier Disruption and Hemorrhagic Transformation and Improves Neurological Outcome in Ischemic Stroke Rats with Delayed T-Pa Treatment: Involvement of Onoo(-)-Mmp-9 Pathway. Translational Stroke Research, 9, 515-529.
https://doi.org/10.1007/s12975-017-0598-3
[41]  Romanos, E., Planas, A.M., Amaro, S. and Chamorro, A. (2007) Uric Acid Reduces Brain Damage and Improves the Benefits of Rt-Pa in a Rat Model of Thromboembolic Stroke. Journal of Cerebral Blood Flow & Metabolism, 27, 14-20.
https://doi.org/10.1038/sj.jcbfm.9600312
[42]  Chen, H., Guan, B., Wang, B., Pu, H., Bai, X., Chen, X., et al. (2020) Glycyrrhizin Prevents Hemorrhagic Transformation and Improves Neurological Outcome in Ischemic Stroke with Delayed Thrombolysis through Targeting Peroxynitrite-Mediated Hmgb1 Signaling. Translational Stroke Research, 11, 967-982.
https://doi.org/10.1007/s12975-019-00772-1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413