全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

合成磁共振影像组学模型对前列腺良恶性病变的鉴别诊断价值
Differential Value of Synthetic MRI Radiomics Model for Benign and Malignant Prostate Lesions

DOI: 10.12677/MD.2024.141014, PP. 98-105

Keywords: 合成磁共振,影像组学,前列腺癌,诊断效能
SyMRI
, Radiomics, Prostate Cancer, Diagnostic Efficacy

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨基于合成磁共振(SyMRI)的影像组学模型对前列腺良恶性病变的鉴别诊断价值。方法:回顾性分析本院2020年11月~2022年10月经病理证实的213例患者的影像资料及临床资料,其中良性108例,恶性105例。患者均行常规MRI和多动态多回波(MDME)序列扫描。采用随机抽样方法将患者按7:3的比例分成训练组与验证组。利用Python 3.7.1对患者的影像资料进行特征采集,采用T检验/Mann-Whitney U检验、mRMR、LASSO算法及Spearman相关分析筛选影像组学特征,使用逻辑回归(LR)、支持向量机(SVM)和随机森林(RF)构建T1、T2、PD及多序列定量图的影像组学模型。通过受试者工作特征曲线(ROC)对模型的诊断效能进行验证。结果:在不同定量图的影像组学模型中,多序列联合模型的效能最好,LR、RF及SVM的ROC曲线下面积(AUC)训练组分别为0.859、0.905、0.852,验证组分别为0.850、0.889、0.847,其中RF模型的AUC值最高。结论:合成磁共振影像组学模型对前列腺良恶性病变有较高的鉴别诊断效能,其中多序列联合模型的诊断效能最好。
Objective: To explore the differential value of synthetic magnetic resonance (SyMRI) based radi-omics model for benign and malignant prostate lesions. Methods: The imaging and clinical data of 213 patients with pathologically confirmed prostate lesions from November 2020 to October 2022 in our hospital were retrospectively analyzed, of which 108 were benign and 105 were malignant. Patients were scanned with conventional MRI and multidynamic multiple echo (MDME) sequences. Random sampling method was used to divide the patients into training and validation groups in the ratio of 7:3. Python 3.7.1 was used to collect features from the patients’ images, and T-test/Mann-Whitney U-test, mRMR, LASSO algorithm and Spearman’s correlation analysis were used to screen the imaging histological features, and logistic regression (LR), support vector ma-chine (SVM) and random forest (RF) were used to construct the T1, T2, PD and multi-sequence quantile map. Quantile map and multiple sequence quantile map for imaging histology modeling. The diagnostic efficacy of the models was validated by subject work characteristic curve (ROC). Re-sults: Radiomics model in different quantitative maps, the combined multisequence model had the best efficacy, with area under the ROC curve (AUC) of 0.859, 0.905, and 0.852 for LR, RF, and SVM in the training group and 0.850, 0.889, and 0.847 in the validation group, respectively, with the RF model having the highest AUC value. Conclusion: The synthetic magnetic resonance imaging histol-ogy model has high differential diagnostic efficacy for benign and malignant prostate lesions, with the best diagnostic efficacy of the combined multi-sequence model.

References

[1]  Siegel, R.L., Miller, K.D., Wagle, N.S., et al. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48.
https://doi.org/10.3322/caac.21763
[2]  Xia, C., Dong, X., Li, H., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chinese Medical Journal, 135, 584-590.
https://doi.org/10.1097/CM9.0000000000002108
[3]  George, A.K., Turkbey, B., Valayil, S.G., et al. (2016) A Urolo-gist’s Perspective on Prostate Cancer Imaging: Past, Present, and Future. Abdominal Radiology (New York), 41, 805-816.
https://doi.org/10.1007/s00261-016-0751-6
[4]  Zhu, X.L., Tung, T.H., Li, H., et al. (2023) Using “Age and Total-PSA” as the Main Indicators: The Results of Taizhou Integrated Prostate Screening (No. 2). American Journal of Men’s Health, 17, 15579883231161292.
https://doi.org/10.1177/15579883231161292
[5]  Xu, M., Fang, M., Zou, J., et al. (2019) Using Biparametric MRI Ra-diomics Signature to Differentiate between Benign and Malignant Prostate Lesions. European Journal of Radiology, 114, 38-44.
https://doi.org/10.1016/j.ejrad.2019.02.032
[6]  Chatterjee, A., Tokdemir, S., Gallan, A.J., et al. (2019) Multiparametric MRI Features and Pathologic Outcome of Wedge-Shaped Lesions in the Peripheral Zone on T2-Weighted Images of the Prostate. AJR American Journal of Roentgenology, 212, 124-129.
https://doi.org/10.2214/AJR.18.19742
[7]  Pecoraro, M., Turk-bey, B., Purysko, A.S., et al. (2022) Diagnostic Accuracy and Observer Agreement of the MRI Prostate Imaging for Recurrence Reporting Assessment Score. Radiology, 304, 342-350.
https://doi.org/10.1148/radiol.212252
[8]  Dastmalchian, S., Kilinc, O., Onyewadume, L., et al. (2021) Radiomic Analysis of Magnetic Resonance Fingerprinting in Adult Brain Tumors. European Journal of Nuclear Medicine and Molecular Imaging, 48, 683-693.
https://doi.org/10.1007/s00259-020-05037-w
[9]  Zhao, L., Liang, M., Wang, S., et al. (2021) Preoperative Evaluation of Extramural Venous Invasion in Rectal Cancer Using Radiomics Analysis of Relaxation Maps from Synthetic MRI. Abdominal Radiology (New York), 46, 3815-3825.
https://doi.org/10.1007/s00261-021-03021-y
[10]  Hagiwara, A., Hori, M., Cohen-Adad, J., et al. (2019) Linearity, Bias, Intrascanner Repeatability, and Interscanner Reproducibility of Quantitative Multidynamic Multiecho Sequence for Rapid Sim-ultaneous Relaxometry at 3 T: A Validation Study with a Standardized Phantom and Healthy Controls. Investigative Radiology, 54, 39-47.
https://doi.org/10.1097/RLI.0000000000000510
[11]  Matsuda, M., Kido, T., Tsuda, T., et al. (2020) Utility of Synthetic MRI in Predicting the Ki-67 Status of Oestrogen Receptor-Positive Breast Cancer: A Feasibility Study. Clinical Radiology, 75, 398.E1-.E8.
https://doi.org/10.1016/j.crad.2019.12.021
[12]  崔亚东, 李春媚, 韩思圆, 等. 合成MRI定量参数对前列腺癌的诊断价值[J]. 中华放射学杂志, 2021, 55(9): 975-980.
[13]  Lambin, P., Leijenaar, R.T.H., Deist, T.M., et al. (2017) Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nature Reviews Clinical Oncology, 14, 749-762.
https://doi.org/10.1038/nrclinonc.2017.141
[14]  Makowski, M.R., Bressem, K.K., Franz, L., et al. (2021) De Novo Ra-diomics Approach Using Image Augmentation and Features from T1 Mapping to Predict Gleason Scores in Prostate Cancer. Investigative Radiology, 56, 661-668.
https://doi.org/10.1097/RLI.0000000000000788
[15]  Crombé, A., Buy, X., Han, F., et al. (2021) Assessment of Repeata-bility, Reproducibility, and Performances of T2 Mapping-Based Radiomics Features: A Comparative Study. Journal of Magnet-ic Resonance Imaging: JMRI, 54, 537- 548.
https://doi.org/10.1002/jmri.27558
[16]  Luo, Z., Li, J., Liao, Y., et al. (2022) Radiomics Analysis of Multiparametric MRI for Prediction of Synchronous Lung Metastases in Osteosarcoma. Frontiers in Oncology, 12, Article ID: 802234.
https://doi.org/10.3389/fonc.2022.802234
[17]  Cui, Y., Han, S., Liu, M., et al. (2020) Diagnosis and Grading of Prostate Cancer by Relaxation Maps from Synthetic MRI. Journal of Magnetic Resonance Imaging: JMRI, 52, 552-564.
https://doi.org/10.1002/jmri.27075
[18]  Xia, W., Hu, B., Li, H., et al. (2021) Multiparamet-ric-MRI-Based Radiomics Model for Differentiating Primary Central Nervous System Lymphoma from Glioblastoma: Devel-opment and Cross-Vendor Validation. Journal of Magnetic Resonance Imaging: JMRI, 53, 242-250.
https://doi.org/10.1002/jmri.27344
[19]  Gu, D., Xie, Y., Wei, J., et al. (2020) MRI-Based Radiomics Signature: A Poten-tial Biomarker for Identifying Glypican 3-Positive Hepatocellular Carcinoma. Journal of Magnetic Resonance Imaging: JMRI, 52, 1679-1687.
https://doi.org/10.1002/jmri.27199
[20]  Meng, X., Xia, W., Xie, P., et al. (2019) Preoperative Radiomic Signature Based on Multiparametric Magnetic Resonance Imaging for Noninvasive Evaluation of Biological Characteristics in Rectal Cancer. European Radiology, 29, 3200-3209.
https://doi.org/10.1007/s00330-018-5763-x
[21]  Zhou, X., Yi, Y., Liu, Z., et al. (2019) Radiomics-Based Pretherapeutic Prediction of Non-Response to Neoadjuvant Therapy in Locally Advanced Rectal Can-cer. Annals of Surgical Oncology, 26, 1676-1684.
https://doi.org/10.1245/s10434-019-07300-3
[22]  Meng, L., Dong, D., Chen, X., et al. (2021) 2D and 3D CT Radiomic Features Performance Comparison in Characterization of Gastric Cancer: A Multi-Center Study. IEEE Journal of Biomedical and Health Informatics, 25, 755-763.
https://doi.org/10.1109/JBHI.2020.3002805

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413