全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

工业消声器侧壁传声的预测方法与拟合公式
Flanking Transmission Prediction and a Fitting Equation for Industrial Mufflers

DOI: 10.12677/OJAV.2024.121001, PP. 1-13

Keywords: 消声器,侧壁传声,模态分解法,声功率
Muffler
, Flanking Sound Transmission, Modal Decomposition Method, Sound Power

Full-Text   Cite this paper   Add to My Lib

Abstract:

大型工业消声器空气通道透射的声能量往往远小于侧壁振动二次辐射引起的噪声泄漏。本文基于圆形声波导理论给出一种消声器侧壁传声的预测方法。假设半无限长管道一端布置声源,利用模态分解法得到圆柱管壁外的声场,进而计算有限长管道侧壁的透射声功率和传递损失。在此基础上,综合考虑质量、结构环频和吻合频率的影响,结合解析方法得到的数据,拟合得到一个工程预报公式,可应用于典型工业消声器侧壁传声损失的快速估算。随后分析了侧壁传声对消声器插入损失的影响,对于实际的工业消声器,考虑侧壁传声后的插入损失与实测结果接近,验证了预测方法的可行性。
The sound energy transmitted from the air passage of large industrial muffler is often much smaller than that from the flanking paths. In this paper, based on acoustic waveguide theory and commer-cial finite element tool, a prediction method of flanking sound transmission for a cylindrical muffler is proposed. Assuming that the sound source is arranged at one end of a semi-infinite-length pipe, the sound field outside the cylindrical pipe wall is calculated using the modal decomposition meth-od. Then the transmitted sound power and transmission loss are calculated for the side wall of the finite-length pipe. Considering the effects of mass, ring frequency and coincident frequency, com-bined with the data obtained from the analytical method, an engineering prediction formula is proposed that can be used to estimate the flanking transmission loss of a typical industrial muffler. Subsequently, the effect of sidewall sound transmission on the insertion loss of the muffler was an-alyzed, and the results showed that the insertion loss of the muffler is close to the measured results, which verifies the feasibility of the prediction method.

References

[1]  Young, C.J. and Crocker, M.J. (1975) Prediction of Transmission Loss in Mufflers by the Finite-Element Method. The Journal of the Acoustical Society of America, 57, 144-148.
https://doi.org/10.1121/1.380424
[2]  Ross, D.F. (1980) A Finite Element Analysis of Parallel-Coupled Acoustic Systems Using Subsystems. Journal of Sound and Vibration, 69, 509-518.
https://doi.org/10.1016/0022-460X(80)90621-5
[3]  Ross, D.F. (1981) A Finite Element Analysis of Perforated Component Acoustic Systems. Journal of Sound and Vibration, 79, 133-143.
https://doi.org/10.1016/0022-460X(81)90333-3
[4]  Mehdizadeh, O.Z. and Paraschivoiu, M. (2005) A Three-Dimensional Finite Element Approach for Predicting the Transmission Loss in Mufflers and Silencers with No Mean Flow. Applied Acoustics, 66, 902-918.
https://doi.org/10.1016/j.apacoust.2004.11.008
[5]  Fu, J., Xu, M., Zhang, Z., et al. (2019) Muffler Structure Im-provement Based on Acoustic Finite Element Analysis. Journal of Low Frequency Noise, 38, 415-426.
https://doi.org/10.1177/1461348418825200
[6]  Fu, J., Xu, M., Zheng, W., et al. (2021)Effects of Structural Pa-rameters on Transmission Loss of Diesel Engine Muffler and Analysis of Prominent Structural Parameters. Applied Acoustics, 173, Article ID: 107686.
https://doi.org/10.1016/j.apacoust.2020.107686
[7]  温华兵, 钱进, 洪良星. 船用柴油机进气消声器声学性能研究及改进设计[J]. 舰船科学技术, 2018, 40(15): 81-84.
[8]  马正刚, 袁桐桐, 刘红丹, 等. 穿孔共振腔消声器声学性能研究[J]. 噪声与振动控制, 2021, 41(6): 215-218.
[9]  陈志响, 季振林, 马庆镇, 等. 非均匀流条件下穿孔管消声器传递损失计算方法与特性分析[J]. 声学技术, 2022, 41(5): 705-710.
[10]  唐焱, 赵立铭, 梁才航. 柴油机排气消声器流场对传递损失的影响研究[J]. 机床与液压, 2020, 48(20): 9-13.
[11]  Zhang, L., Shi, H.-M., Zeng, X.-H., et al. (2020)Theoretical and Experimental Study on the Transmission Loss of a Side Outlet Muffler. Shock and Vibration, 2020, Article ID: 6927574.
https://doi.org/10.1155/2020/6927574
[12]  褚亮亮, 王艳. 基于COMSOL的汽车抗性消声器的仿真分析[J]. 农业装备与车辆工程, 2021, 59(3): 118-122.
[13]  张士伟. 多腔汽车消声器消声性能仿真分析[J]. 机械设计与制造, 2021(3): 238-241.
[14]  赵亚林, 蒋浩杰, 马建刚, 等. 阵列式阻性消声器传递损失计算模型[J]. 应用声学, 2023, 42(6): 1264-1270.
[15]  范一良, 季振林. 阻抗复合消声器声学性能有限元预测方法及分析[J]. 声学学报, 2022, 47(5): 675-685.
[16]  Laulagnet, B. and Guyader, J.L. (1989) Modal Analysis of a Shell’s Acoustic Radiation in Light and Heavy Fluids. Journal of Sound and Vibration, 131, 397-415.
https://doi.org/10.1016/0022-460X(89)91001-8
[17]  郭军丽, 吴亚锋, 徐俊伟, 等. 基于管道声模态的消声器传递损失计算[J]. 噪声与振动控制, 2013, 33(5): 179-183.
[18]  El-Mously, M. (2003) Fundamental Natu-ral Frequencies of Thin Cylindrical Shells: A Comparative Study. Journal of Sound and Vibration, 264, 265-275.
https://doi.org/10.1016/S0022-460X(02)01391-3
[19]  Koval, L.R. (1976) On Sound Transmission into a Thin Cy-lindrical Shell under “Flight Conditions”. Journal of Sound and Vibration, 48, 1167-1186.
https://doi.org/10.1016/0022-460X(76)90465-X
[20]  Liu, B., Pan, J., Li, X., et al. (2002) Sound Radiation from a Water-Filled Pipe, Radiation into Light Fluid. Journal of the Acoustical Society of America, 112, 2814-2824.
https://doi.org/10.1121/1.1515794
[21]  刘碧龙, 李晓东, 田静, 等. 具有弹性障板的有限长充液管道的管口声辐射[J]. 声学学报, 2004(2): 131-136.
[22]  Liu, B., Feng, L. and Nilsson, A. (2007) Influence of Overpressure on Sound Transmission through Curved Panels. Journal of Sound and Vibration, 302, 760-776.
https://doi.org/10.1016/j.jsv.2006.12.014
[23]  国家技术监督局. 声学消声器测量方法: GB/T 4760-1995[S]. 北京: 中国标准出版社, 1995.
[24]  陆森林, 曾发林, 刘红光, 等. 消声器中的高次波及其对消声性能的影响[J]. 江苏大学学报(自然科学版), 2007, 28(5): 385-388.
[25]  中华人民共和国国家质量监督检验检疫总局. 声学-管道消声器和风道末端单元的实验室测试方法: GB/T 25516-2010[S]. 北京: 中国质检出版社, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413