全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

某4000 m3级高炉炭砖侵蚀机理研究
A Study on the Erosion Mechanism of Carbon Bricks in a 4000 m3 Blast Furnace

DOI: 10.12677/MEng.2024.111003, PP. 18-26

Keywords: 大型高炉,炉缸,炭砖,破损调查,侵蚀机理
Large-Scale Blast Furnace
, Hearth, Carbon Bricks, Damage Investigation, Erosion Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

大型高炉长寿化是实现炼铁工艺节能、减排、平衡成本与高产量的重要手段,而影响高炉寿命最重要的因素则是高炉炉缸炭砖的破损情况。本文对我国某4000 m3高炉炉缸炭砖的侵蚀行为进行了详细的分析,研究了炭砖的化学成分和物理性能的变化,讨论了残余炭砖热面的微观结构组成,得出了炉缸炭砖的侵蚀机理。结果表明,该4000 m3高炉炉缸炭砖的侵蚀在高度和圆周方向上较不均匀,在高度方向上,出铁口中心线以下2.1 m处的炭砖最为严重,圆周方向侵蚀最严重处则主要发生在铁口正下方与靠近铁口周围区域,炉缸侵蚀形貌整体“象脚形”。使用近15年后的高炉炭砖耐压强度大大降低,灰分含量明显增加,炭砖热面处富集有大量氧化锌与氧化钾及氧化钠。在炉缸炭砖砖缝间和炭砖脆化层内部发现有大量的锌沉积,有效证明了锌蒸气通过在炭砖表面的沉积和渗入是促进炭砖脆性层形成、降低炭砖抗铁水侵蚀能力、增加炉缸炭砖破裂的风险的重要原因。
The prolonged operation of large-scale blast furnaces is an important means to achieve energy saving, emission reduction, cost balance, and high productivity in ironmaking processes. The most critical factor affecting the lifespan of a blast furnace is the damage to the hearth carbon bricks. In this paper, a detailed analysis of the erosion behavior of the hearth carbon bricks in a 4000 m3 blast furnace in China was conducted. The changes in the chemical composition and physical properties of the carbon bricks were studied, and the micro structural composition of the residual carbon bricks on the hot face was discussed, leading to the establishment of the erosion mechanism of the hearth carbon bricks. The results indicate that the erosion of the hearth carbon bricks in the 4000 m3 blast furnace is uneven in both the height and circumference directions. In the height direction, the most severe erosion occurs at a distance of 2.1 m below the centerline of the iron tapping hole. In the circumference direction, the most severe erosion mainly occurs directly below the iron tapping hole and in the surrounding area. The overall erosion morphology of the hearth resembles an “elephant foot” shape. After nearly 15 years of usage, the compressive strength of the blast furnace carbon bricks significantly decreased, while the ash content increased noticeably. A large amount of zinc deposition was found between the cracks of the carbon bricks in the furnace and inside the brittle layer of the carbon bricks, effectively proving that the deposition and infiltration of zinc vapor on the surface of the carbon bricks are important reasons for promoting the formation of the brittle layer of the carbon bricks, reducing the resistance of the carbon bricks to molten iron erosion, and increasing the risk of fracture of the furnace carbon bricks.

References

[1]  王训富. 大型高炉炉缸侵蚀机理与长寿研究[D]: [博士学位论文]. 上海: 上海大学, 2018.
[2]  张建良, 刘征建, 焦克新, 等. 炼铁新技术及基础理论研究进展[J]. 工程科学学报, 2021, 43(12): 1630-1646.
[3]  张寿荣, 姜曦. 中国大型高炉生产现状分析及展望[J]. 钢铁, 2017, 52(2): 1-4.
[4]  刘彦祥, 张建良, 焦克新, 等. 方大特钢1号高炉长寿技术分析[J]. 炼铁, 2018, 37(3): 53-55.
[5]  张雪松, 张勇, 孙健, 等. 高炉炉缸破损调研分析[J]. 中国冶金, 2021, 31(11): 9-15.
[6]  焦克新, 张建良, 刘征建, 等. 关于高炉炉缸长寿的关键问题解析[J]. 钢铁, 2020, 55(8): 193-198.
[7]  赵雪斌, 路振毅, 唐顺兵. 太钢3号高炉长寿经验浅析[J]. 炼铁, 2022, 41(2): 11-14.
[8]  Shao, L. and Saxén, H. (2012) Numerical Prediction of Iron Flow and Bottom Erosion in the Blast Furnace Hearth. Steel Research International, 83, 878-885.
https://doi.org/10.1002/srin.201200041
[9]  马洪修, 张建良, 焦克新, 等. 高炉炉缸侵蚀特征及侵蚀原因探析[J]. 钢铁, 2018, 53(9): 14-19.
[10]  宋阳, 狄瞻霞, 刘颖, 等. 高炉死料柱状态及其对铁水流动的影响[J]. 钢铁, 2019, 54(3): 23-28, 34.
[11]  张寿荣. 武钢高炉寿命和内衬侵蚀的研究[J]. 炼铁, 1983(1): 1-8.
[12]  邓勇, 张建良, 焦克新. 温度和铁水成分对炭砖溶解行为的影响[J]. 钢铁, 2018, 53(5): 25-31.
[13]  宋木森, 于仲洁, 熊亚飞, 等. 武钢5号高炉炉体破损调查研究[J]. 炼铁, 2008, 27(4): 1-10.
[14]  Niu, Q., Cheng, S., Xu, W., et al. (2019) Microstructure and Phase of Carbon Brick and Protective Layer of a 2800 m3 Industrial Blast Furnace Hearth. ISIJ International, 59, 1776-1785.
https://doi.org/10.2355/isijinternational.ISIJINT-2019-029
[15]  Deng, Y., Lyu, Q., Zhang, J., et al. (2020) Erosion of Carbon Brick by Zinc in Hearth of Blast Furnace. ISIJ International, 60, 226-232.
https://doi.org/10.2355/isijinternational.ISIJINT-2019-142
[16]  李华军, 高鹏, 黄世高, 等. 马钢A高炉中修铜冷却壁破损调查[J]. 炼铁, 2021, 40(4): 21-24.
[17]  Cui, K., Wang, J., Wang, H., et al. (2022) Erosion Behavior and Longevity Technologies of Refractory Linings in Blast Furnaces for Ironmaking: A Review. Steel Research International, 93, Article ID: 2200266.
https://doi.org/10.1002/srin.202200266
[18]  姚慎, 张朝晖, 邢相栋, 等. 1800 m3高炉炉缸炭砖侵蚀调查及机制分析[J]. 钢铁研究学报, 2021, 33(5): 400-407.
[19]  Luo, W. and Schlesinger, M.E. (1994) Thermodynamics of the Iron-Carbon-Zinc System. Metallurgical and Materials Transactions B, 25, 569-578.
https://doi.org/10.1007/BF02650077
[20]  Inada, T., Kasai, A., Nakano, K., et al. (2009) Dissection Investiga-tion of Blast Furnace Hearth—Kokura No. 2 Blast Furnace (2nd Campaign). ISIJ International, 49, 470-478.
https://doi.org/10.2355/isijinternational.49.470
[21]  Fan, X., Zhang, J., Jiao, K., et al. (2019) Distribution of Harmful Elements in Dissected 125 m3 Blast Furnace. Canadian Metallurgical Quarterly, 58, 400-409.
https://doi.org/10.1080/00084433.2019.1617508
[22]  Shinotake, A., Nakamura, H., Yadoumaru, N., et al. (2003) Investigation of Blast-Furnace Hearth Sidewall Erosion by Core Sample Analysis and Consideration of Campaign Operation. ISIJ international, 43, 321-330.
https://doi.org/10.2355/isijinternational.43.321

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413