全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Re-Densification Effect of Pressure-Injected Peptide-Hyaluronic Acid Combination on Male Androgenic Alopecia

DOI: 10.4236/jcdsa.2024.141003, PP. 29-44

Keywords: Jet Injections, Electronic Pneumatic Injections, Male Androgenic Alopecia, Bioactive Peptides, EnerJet

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction: Mechanism of male androgenic alopecia (MAGA) is complex and leads to an excessive hair shedding and decreased hair density. Oral, topical, and injectable autologous treatments demonstrate ability to stimulate hair re-growth, but the response is suboptimal or plateaus off. Synthetic combination of the peptide complex and hyaluronic acid (P-HA) demonstrated hair regrowth in alopecia patients. Electronically-operated pneumatic injections (EPI) generate micro-trauma in the dermis and under wound-healing conditions may enhance regeneration effect of P-HA. Methods: Subjects seeking improvement of their male pattern hair loss (Hamilton-Norwood type 2-4) received the P-HA treatments through EPI. The course included 4 treatments every two weeks over the 8-week period. In 6 months, the hair growth was assessed comparative to baseline by global clinical photography and digital phototrichograms. The treatment safety and tolerability were documented through the whole study period. Results: Twelve men (30-45 years old) completed the treatment course with high tolerability and without adverse events. Post-treatment assessment of the previously bald areas showed improved coverage on the clinical photographs. The phototrichograms demonstrated statistically significant increase in terminal hair density by 36%, cumulative hair thickness by 37%, and follicular units by 20%; all contributing to a 38% increase in cumulated hair density (all p < 0.05). Conclusion: Electronic pneumatic injections are well tolerated and can be safely used for the needle-free administration of the peptide-hyaluronic acid combination in MAGA therapy. We achieved significant hair re-densification in the balding scalp. The exact role of the EPI-induced impact in the hair re-growth mechanism remains to be ascertained.

References

[1]  Asfour, L., Cranwell, W. and Sinclair, R. (2000) Male Androgenetic Alopecia. In: Feingold, K.R., Anawalt, B., Boyce, A., et al., Eds., Endotext, MDText.com, Inc., South Dartmouth.
[2]  Sonthalia, S., Daulatabad, D. and Tosti, A. (2016) Hair Restoration in Androgenetic Alopecia: Looking Beyond Minoxidil, Finasteride and Hair Transplantation. Journal of Cosmetology & Trichology, 2, Article 1000105.
https://doi.org/10.4172/2471-9323.1000105
[3]  Yoo, H.G., Kim, J.S., Lee, S.R., Pyo, H.K., Moon, H.I., Lee, J.H., Kwon, O.S., Chung, J.H., Kim, K.H., Eun, H.C. and Cho, K.H. (2006) Perifollicular Fibrosis: Pathogenetic Role in Androgenetic Alopecia. Biological and Pharmaceutical Bulletin, 29, 1246-1250. https://doi.org/10.1248/bpb.29.1246
[4]  Rathnayake, D. and Sinclair, R. (2010) Male Androgenetic Alopecia. Expert Opinion on Pharmacotherapy, 11, 1295-1304.
https://doi.org/10.1517/14656561003752730
[5]  Shimizu, Y., Ntege, E.H., Sunami, H. and Inoue, Y. (2022) Regenerative Medicine Strategies for Hair Growth and Regeneration: A Narrative Review of Literature. Regenerative Therapy, 21, 527-539. https://doi.org/10.1016/j.reth.2022.10.005
[6]  Elliott, K., Stephenson, T.J. and Messenger, A.G. (1999) Differences in Hair Follicle Dermal Papilla Volume Are Due to Extracellular Matrix Volume and Cell Number: Implications for the Control of Hair Follicle Size and Androgen Responses. Journal of Investigative Dermatology, 113, 873-877.
https://doi.org/10.1046/j.1523-1747.1999.00797.x
[7]  Loing, E., Lachance, R., Ollier, V. and Hocquaux, M. (2013) A New Strategy to Modulate Alopecia Using a Combination of Two Specific and Unique Ingredients. Journal of Cosmetic Science, 64, 45-58.
[8]  Fields, K., Falla, T.J., Rodan, K. and Bush, L. (2009) Bioactive Peptides: Signaling the Future. Journal of Cosmetic Dermatology, 8, 8-13.
https://doi.org/10.1111/j.1473-2165.2009.00416.x
[9]  Rinaldi, F., Sorbellini, E., Castiglioni, M. and Bezzola, P. (2010) The Role of Mimicking Growth Factors to Control Anagen Phase: Evaluation in vitro and in vivo. Journal of the American Academy of Dermatology, 62, AB74.
https://doi.org/10.1016/j.jaad.2009.11.311
[10]  Yang, W., Meng, L., Wang, H., Chen, R., Wang, R., Ma, X., Xu, G., Zhou, J., Wang, S., Lu, Y. and Ma, D. (2006) Inhibition of Proliferative and Invasive Capacities of Breast Cancer Cells by Arginine-Glycine-Aspartic Acid Peptide in vitro. Oncology Reports, 15, 113-117. https://doi.org/10.3892/or.15.1.113
[11]  Fan, Y., Li, X.D., He, P.P., Hu, X.X., Zhang, K., Fan, J.Q., Yang, P.P., Zheng, H.Y., Tian, W., Chen, Z.M., Ji, L., Wang, H. and Wang, L. (2020) A Biomimetic Peptide Recognizes and Traps Bacteria in Vivo as Human Defensin-6. Science Advances, 6, Article eaaz4767. https://doi.org/10.1126/sciadv.aaz4767
[12]  Gazitaeva, Z.I., Drobintseva, A.O., Chung, Y., Polyakova, V.O. and Kvetnoy, I.M. (2017) Cosmeceutical Product Consisting of Biomimetic Peptides: Antiaging Effects in vivo and in vitro. Clinical, Cosmetic and Investigational Dermatology, 10, 11-16.
https://doi.org/10.2147/CCID.S97573
[13]  Bassino, E., Zanardi, A., Gasparri, F. and Munaron, L. (2016) Effects of the Biomimetic Peptide Sh-Biopeptide 9 (CG-VEGF) on Cocultures of Human Hair Follicle Dermal Papilla Cells and Microvascular Endothelial Cells. Experimental Dermatology, 25, 237-239. https://doi.org/10.1111/exd.12906
[14]  Nam, G.H., Jo, K.J., Park, Y.S., Kawk, H.W., Yoo, J.G., Jang, J.D., Kang, S.M., Kim, S.Y. and Kim, Y.M. (2019) The Peptide AC 2 Isolated from Bacillus-Treated Trapa japonica Fruit Extract Rescues DHT (Dihydrotestosterone)-Treated Human Dermal Papilla Cells and Mediates mTORC1 Signaling for Autophagy and Apoptosis Suppression. Scientific Reports, 9, Article No. 16903.
https://doi.org/10.1038/s41598-019-53347-3
[15]  Kubanov, A.A., Gallyamova, Y.A., Korableva, O.A. (2018) A Randomized Study of Biomimetic Peptides Efficacy and Impact on the Growth Factors Expression in the Hair Follicles of Patients with Telogen Effluvium. Journal of Applied Pharmaceutical Science, 8, 15-22.
[16]  Rinaldi, F., Marzani, B., Pinto, D. and Sorbellini, E. (2019) Randomized Controlled Trial on a PRP-like Cosmetic, Biomimetic Peptides Based, for the Treatment of Alopecia Areata. Journal of Dermatological Treatment, 30, 588-593.
https://doi.org/10.1080/09546634.2018.1544405
[17]  (2021) DR. CYJ Hair Filler Mechanism.
https://www.capactuel.com/storage/app/media/pdfs/DR-CYJ-ENG.pdf
[18]  Ito, M., Yang, Z., Andl, T., Cui, C., Kim, N., Millar, S.E. and Cotsarelis, G. (2007) Wnt-Dependent de novo Hair Follicle Regeneration in Adult Mouse Skin after Wounding. Nature, 447, 316-320. https://doi.org/10.1038/nature05766
[19]  Zhang, J., He, X.C., Tong, W.G., Johnson, T., Wiedemann, L.M., Mishina, Y., Feng, J.Q. and Li, L. (2006) Bone Morphogenetic Protein Signaling Inhibits Hair Follicle Anagen Induction by Restricting Epithelial Stem/Progenitor Cell Activation and Expansion. Stem Cells, 24, 2826-2839.
https://doi.org/10.1634/stemcells.2005-0544
[20]  Kwack, M.H., Kim, M.K., Kim, J.C. and Sung, Y.K. (2012) Dickkopf 1 Promotes Regression of Hair Follicles. Journal of Investigative Dermatology, 132, 1554-1560.
https://doi.org/10.1038/jid.2012.24
[21]  Wu, Z., Zhu, Y., Liu, H., Liu, G. and Li, F. (2020) Wnt10b Promotes Hair Follicles Growth and Dermal Papilla Cells Proliferation via Wnt/β-Catenin Signaling Pathway in Rex Rabbits. Bioscience Reports, 40, Article BSR20191248.
https://doi.org/10.1042/BSR20191248
[22]  Espinoza, L., Vinshtok, Y., McCreesh, J., Tyson, J. and McSorley, M. (2020) Kinetic Energy-Assisted Delivery of Hyaluronic Acid for Skin Remodeling in Low and Middle Face. Journal of Cosmetic Dermatology, 19, 2277-2281.
https://doi.org/10.1111/jocd.13339
[23]  Garcia, P.N., Vinshtok, Y., Andrino, R.L. and Cohen, N. (2019) Efficient Treatment of Upper-Lip Rhytidosis by Pneumatic Administration of Hyaluronic Acid. Journal of Cosmetic and Laser Therapy, 21, 346-348.
https://doi.org/10.1080/14764172.2019.1660792
[24]  Cassuto, D. and Vinshtok, Y. (2020) Treatment of Scar Contracture with Intralesional Jet-Assisted Injection of Hyaluronic Acid. Journal of Dermatology Research and Therapy, 6, Article 094. https://doi.org/10.23937/2469-5750/1510094
[25]  Levenberg, A., Halachmi, S., Arad-Cohen, A., Ad-El, D., Cassuto, D., Lapidoth, M. (2010) Clinical Results of Skin Remodeling Using a Novel Pneumatic Technology. International Journal of Dermatology, 49, 1432-1439.
https://doi.org/10.1111/j.1365-4632.2010.04627.x
[26]  Kwon, T.R., Seok, J., Jang, J.H., et al. (2016) Needle-Free Jet Injection of Hyaluronic Acid Improves Skin Remodeling in a Mouse Model. European Journal of Pharmaceutics and Biopharmaceutics, 105, 69-74.
https://doi.org/10.1016/j.ejpb.2016.05.014
[27]  Erlendsson, A.M., Haedersdal, M. and Rossi, A.M. (2020) Needle-Free Injection Assisted Drug Delivery—Histological Characterization of Cutaneous Deposition. Lasers in Surgery and Medicine, 52, 33-37. https://doi.org/10.1002/lsm.23191
[28]  Christensen, R.L., Omland, S.H., Persson, D.P., Husted, S., Haedersdal, M. and Olesen, U.H. (2021) Topical Delivery of Nivolumab, a Therapeutic Antibody, by Fractional Laser and Pneumatic Injection. Lasers in Surgery and Medicine, 53, 154-161. https://doi.org/10.1002/lsm.23322
[29]  MacGillis, D. and Vinshtok, Y. (2021) High-Velocity Pneumatic Injection of Non-Crosslinked Hyaluronic Acid for Skin Regeneration and Scar Remodeling: A Retrospective Analysis of 115 Patients. Journal of Cosmetic Dermatology, 20, 1098-1103. https://doi.org/10.1111/jocd.14002
[30]  Marques, C.C., Denise Steiner, D., Miquelin, G.M., Colferai, M.M.T. and Gatti, E.F. (2016) Comparative and Randomized Study of Rich-Platelet Plasma in Male Androgenetic Alopecia. Surgical & Cosmetic Dermatology, 8, 336-340.
https://doi.org/10.5935/scd1984-8773.20168406
[31]  Bassino, E., Gasparri, F. and Munaron, L. (2020) Protective Role of Nutritional Plants Containing Flavonoids in Hair Follicle Disruption: A Review. International Journal of Molecular Sciences, 21, Article 523.
https://doi.org/10.3390/ijms21020523
[32]  Motofei, I.G., Rowland, D.L., Tampa, M., Sarbu, M.I., Mitran, M.I., Mitran, C.I., Stoian, A.P., Diaconu, C.C., Paunica, S. and Georgescu, S.R. (2020) Finasteride and Androgenic Alopecia; From Therapeutic Options to Medical Implications. Journal of Dermatological Treatment, 31, 415-421.
https://doi.org/10.1080/09546634.2019.1595507
[33]  Goren, A. and Naccarato, T. (2018) Minoxidil in the Treatment of Androgenetic Alopecia. Dermatologic Therapy, 31, e12686. https://doi.org/10.1111/dth.12686
[34]  Kim, J.H., Na, J., Bak, D.H., et al. (2019) Development of Finasteride Polymer Microspheres for Systemic Application in Androgenic Alopecia. International Journal of Molecular Medicine, 43, 2409-2419. https://doi.org/10.3892/ijmm.2019.4149
[35]  Singh, S., Neema, S. and Vasudevan, B. (2017) A Pilot Study to Evaluate Effectiveness of Botulinum Toxin in Treatment of Androgenetic Alopecia in Males. Journal of Cutaneous and Aesthetic Surgery, 10, 163-167.
https://doi.org/10.4103/JCAS.JCAS_77_17
[36]  Gentile, P. and Garcovich, S. (2020) Autologous Activated Platelet-Rich Plasma (AA-PRP) and Non-Activated (A-PRP) in Hair Growth: A Retrospective, Blinded, Randomized Evaluation in Androgenetic Alopecia. Expert Opinion on Biological Therapy, 20, 327-337. https://doi.org/10.1080/14712598.2020.1724951
[37]  Gentile, P. (2019) Autologous Cellular Method Using Micrografts of Human Adipose Tissue Derived Follicle Stem Cells in Androgenic Alopecia. International Journal of Molecular Sciences, 20, Article 3446.
https://doi.org/10.3390/ijms20143446
[38]  Gentile, P., Scioli, M.G., Cervelli, V., Orlandi, A. and Garcovich, S. (2020) Autologous Micrografts from Scalp Tissue: Trichoscopic and Long-Term Clinical Evaluation in Male and Female Androgenetic Alopecia. BioMed Research International, 2020, Article ID: 7397162. https://doi.org/10.1155/2020/7397162
[39]  Ramdasi, S. and Tiwari, S.K. (2016) Growth Factors and Cytokines Secreted in Conditioned Media by Mesenchymal Stem Cells—Promising Possible Therapeutic Approach for Hair Regeneration. Journal of Stem Cells, 11, 201-211.
[40]  Shin, H., Won, C.H., Chung, W.K., et al. (2017) Up-to-Date Clinical Trials of Hair Regeneration Using Conditioned Media of Adipose-Derived Stem Cells in Male and Female Pattern Hair Loss. Current Stem Cell Research & Therapy, 12, 524-530.
https://doi.org/10.2174/1574888X12666170504120244
[41]  Gkini, M.A., Kouskoukis, A.E., Tripsianis, G., Rigopoulos, D. and Kouskoukis, K. (2014) Study of Platelet-Rich Plasma Injections in the Treatment of Androgenetic Alopecia through an One-Year Period. Journal of Cutaneous and Aesthetic Surgery, 7, 213-219. https://doi.org/10.4103/0974-2077.150743
[42]  Anderi, R., Makdissy, N., Azar, A., Rizk, F. and Hamade, A. (2018) Cellular Therapy with Human Autologous Adipose-Derived Adult Cells of Stromal Vascular Fraction for Alopecia Areata. Stem Cell Research & Therapy, 9, Article No. 141.
https://doi.org/10.1186/s13287-018-0889-y
[43]  Vinshtok, Y. and Cassuto, D. (2020) Biochemical and Physical Actions of Hyaluronic Acid Delivered by Intradermal Jet Injection Route. Journal of Cosmetic Dermatology, 19, 2505-2512. https://doi.org/10.1111/jocd.13674
[44]  Kwon, H.H., Choi, S.C., Park, K.H. and Jung, J.Y. (2018) A Novel Combination Regimen with Intense Focused Ultrasound and Pressure-and Dose-Controlled Transcutaneous Pneumatic Injection of Hypertonic Glucose Solution for Lifting and Tightening of the Aging Face. Journal of Cosmetic Dermatology, 17, 373-379.
https://doi.org/10.1111/jocd.12419
[45]  Bik, L., Van Doorn, M.B.A., Biskup, E., Ortner, V.K., Haedersdal, M. and Olesen, U.H. (2021) Electronic Pneumatic Injection-Assisted Dermal Drug Delivery Visualized by Ex Vivo Confocal Microscopy. Lasers in Surgery and Medicine, 53, 141-147. https://doi.org/10.1002/lsm.23279
[46]  Turlier, V., Delalleau, A., Casas, C., et al. (2013) Association between Collagen Production and Mechanical Stretching in Dermal Extracellular Matrix: In Vivo Effect of Crosslinked Hyaluronic Acid Filler. A Randomised, Placebo-Controlled Study. Journal of Dermatological Science, 69, 187-194.
https://doi.org/10.1016/j.jdermsci.2012.12.006
[47]  Chu, S.Y., Chou, C.H., Huang, H.D., Yen, M.H., Hong, H.C., Chao, P.H., Wang, Y.H., Chen, P.Y., Nian, S.X., Chen, Y.R., Liou, L.Y., Liu, Y.C., Chen, H.M., Lin, F.M., Chang, Y.T., Chen, C.C. and Lee, O.K. (2019) Mechanical Stretch Induces Hair Regeneration through the Alternative Activation of Macrophages. Nature Communications, 10, Article 1524. https://doi.org/10.1038/s41467-019-09402-8
[48]  Litwiniuk, M., Krejner, A., Speyrer, M.S., Gauto, A.R. and Grzela, T. (2016) Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds: A Compendium of Clinical Research and Practice, 28, 78-88.
[49]  Fallacara, A., Baldini, E., Manfredini, S. and Vertuani, S. (2018) Hyaluronic Acid in the Third Millennium. Polymers, 10, 701. https://doi.org/10.3390/polym10070701
[50]  Patzelt, A. and Lademann, J. (2013) Drug Delivery to Hair Follicles. Expert Opinion on Drug Delivery, 10, 787-797. https://doi.org/10.1517/17425247.2013.776038
[51]  Santos, A.C., Pereira-Silva, M., Guerra, C., Costa, D., Peixoto, D., Pereira, I., Pita, I., Ribeiro, A.J. and Veiga, F. (2020) Topical Minoxidil-Loaded Nanotechnology Strategies for Alopecia. Cosmetics, 7, Article 21.
https://doi.org/10.3390/cosmetics7020021
[52]  Seok, J., Oh, C.T., Kwon, H.J., Kwon, T.R., Choi, E.J., Choi, S.Y., Mun, S.K., Han, S.H., Kim, B.J. and Kim, M.N. (2016) Investigating Skin Penetration Depth and Shape Following Needle-Free Injection at Different Pressures: A Cadaveric Study. Lasers in Surgery and Medicine, 48, 624-628. https://doi.org/10.1002/lsm.22517
[53]  Taddio, A., Ipp, M., Thivakaran, S., et al. (2012) Survey of the Prevalence of Immunization Non-Compliance Due to Needle Fears in Children and Adults. Vaccine, 30, 4807-4812. https://doi.org/10.1016/j.vaccine.2012.05.011
[54]  Spoudeas, H.A., Bajaj, P. and Sommerford, N. (2014) Maintaining Persistence and Adherence with Subcutaneous Growth-Hormone Therapy in Children: Comparing Jet-Delivery and Needle-Based Devices. Patient Preference and Adherence, 8, 1255-1263. https://doi.org/10.2147/PPA.S70019
[55]  Rohrer, T.R., Ceplis-Kastner, S., Jorch, N., Müller, H.L., Pfäffle, R., Reinehr, T., Richter-Unruh, A., Weißenbacher, C., Holterhus, P.M., Ferring Arzneimittel GmbH, S.C.-K. (2018) Needle-Free and Needle-Based Growth Hormone Therapy in Children: A Pooled Analysis of Three Long-Term Observational Studies. Hormone Research in Paediatrics, 90, 393-406. https://doi.org/10.1159/000496614
[56]  Abell, E. and Munro, D.D. (1973) Intralesional Treatment of Alopecia Areata with Triamcinolone Acetonide by Jet Injector. British Journal of Dermatology, 88, 55-59.
https://doi.org/10.1111/j.1365-2133.1973.tb06672.x
[57]  Mallick, Y.A., Kapadia, N.F., Mansoor, M. and Talat, H. (2018) Efficacy of Intralesional Triamcinolone Acetonide in Alopecia Areata by Dermojet at Abbasi Shaheed Hospital, Karachi, Pakistan. Rawal Medical Journal, 43, 227-230
[58]  Kaliyadan, F., Alkhateeb, A. and Swaroop, K. (2018) Localized Atrophy with Surrounding Hair Growth in a Case of Alopecia Areata Treated with Intralesional Steroids, Using a Needle-Less Injector. Indian Journal of Dermatology, Venereology and Leprology, 84, 581-582. https://doi.org/10.4103/ijdvl.IJDVL_297_17

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133