全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermal Decomposition of Olive-Solid Waste by TGA: Characterization and Devolatilization Kinetics under Nitrogen and Oxygen Atmospheres

DOI: 10.4236/jpee.2024.123003, PP. 31-47

Keywords: Biomass, Olive-Solid Waste, Thermogravimetry, Pyrolysis, Oxidation, Heating Rates, Kinetics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite the fact that a few countries in the Mediterranean and the Middle East have limited crude oil reserves, they have abundant biomass feedstocks. For instance, Jordan relies heavily on the importation of natural gas and crude oil for its energy needs; but, by applying thermochemical conversion techniques, leftover olive oil can be used to replace these energy sources. Understanding the chemical, physical, and thermal characteristics of raw materials is essential to obtaining the most out of these conversion processes. Thermogravimetric analysis was used in this study to examine the thermal behavior of olive-solid residue (kernel) at three different heating rates (5, 20 and 40 C/min) in nitrogen and oxygen atmospheres. The initial degradation temperature, the residual weight at 500 and 700˚C and the thermal degradation rate during the devolatilization stage (below 400˚C) were all determined. It was found that in N2 and O2 atmospheres, both the initial degradation temperature and the degradation rate increase with increasing heating rates. As heating rates increase in the N2 atmosphere, the residual weight at 500 or 700˚C decreases slightly, but at low heating rates compared to high heating rates in the O2 atmosphere, it decreases significantly. This suggests that a longer lignin oxidation process is better than a shorter one. Coats and Redfern approach was used to identify the mechanism and activation energy for the devolatilization stage of pyrolysis and oxidation reactions. The process mechanism analysis revealed that the model of first-order and second-order reactions may adequately describe the mechanism of heat degradation of the devolatilization step of olive-solid waste for pyrolysis and oxidation processes, respectively.

References

[1]  (2024) Jordan Population.
https://www.worldometers.info/world-population/jordan-population/
[2]  Department of Statistics (2023) Ministry of Agriculture, Annual Reports. Amman, Jordan.
https://dosweb.dos.gov.jo/ar/agriculture/
[3]  (2024)
https://familyinjordan.com/en/2019/10/17/olive-oil-production-in-jordan-pay-visit-to-a-press/
[4]  Hodge, B.K. (2017) Alternative Energy Systems and Applications. 2nd Edition, John Wiley & Sons, New York.
[5]  Atimtay, A.T. and Varol, M. (2007) Investigation of Co-Combustion of Coal and Olive Cake in a Bubbling Fluidized Bed with Secondary Air Injection. Fuel, 88, 10000-10008.
https://doi.org/10.1016/j.fuel.2008.11.030
[6]  Cliffe, K.R and Patumsawad, S. (2001) Co-Combustion of Waste from Olive Oil Production with Coal in a Fluidized bed. Waste Management, 21, 49-53.
https://doi.org/10.1016/S0956-053X(00)00057-X
[7]  Khraisha, Y.H., Hamdan, M.A. and Qalalweh, H.S. (1999) Direct Combustion of Olive Cake Using Fluidized Bed Combustor. Energy Sources, 21, 319-327.
https://doi.org/10.1080/00908319950014803
[8]  Demirbas, A. (2008) Producing Bio-Oil from Olive Cake by Fast Pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30, 38-44.
https://doi.org/10.1080/00908310600626747
[9]  Uzum, B.B., Pütün, A.E. and Pütün E. (2007) Rapid Pyrolysis of Olive Residue. 1. Effect of Heat and Mass Transfer Limitations on Product Yields and Bio-Oil Composition. Energy and Fuels, 21, 1768-1776.
https://doi.org/10.1021/ef060171a
[10]  Gómez-Barea, A., Arjona, R. and Ollero, P. (2005) Pilot-Plant Gasification of Olive Stone: A Technical Assessment. Energy and Fuels, 19, 598-605.
https://doi.org/10.1021/ef0498418
[11]  Skonlon, V., Koufodimos, G., Samaras, Z. and Zabaniotou, A. (2008) Low Temperature Gasification of Olive Kernels in a 5-kW Fluidized Bed Reactor for H2-Rich Producer Gas. International Journal of Hydrogen Energy, 33, 6515-6524.
https://doi.org/10.1016/j.ijhydene.2008.07.074
[12]  Khraisha, Y.H. and Shabib, I.M. (2002) Thermal Analysis of Shale Oil Using Themogravimetry and Differential Scanning Calorimetry. Energy Conversion Management, 43, 229-239.
https://doi.org/10.1016/S0196-8904(01)00023-1
[13]  Elmay, Y., Jeguirim, M., Trouvé, G. and Said, R. (2016) Kinetic Aanalysis of Thermal Decomposition of Date Palm Residues Using Coats-Redfern Method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 1117-1124.
https://doi.org/10.1080/15567036.2013.821547
[14]  Yan, J., Yang, Q., Zhang, L., Lei, Z., Li, Z., Wang, Z., Pen, S., Kang, S. and Shui, H. (2020) Investigation of Kinetics and Thermodynamic Parameters of Coal Pyrolysis with Model-Free Fitting Methods. Carbon Resources Conversion, 3, 173-181.
https://doi.org/10.1016/j.crcon.2020.11.002
[15]  Brown, M.E. (2001) Introduction to Thermal Analysis: Techniques and Applications, 2nd Edition, Springer, New York.
[16]  Aboulkas, A., El Harfi, K., El Bouadili, A., Benchanaa, M., Mokhlisse, A. and Outzourit, A. (2007) Kinetics of Co-Pyrolysis of Tarfaya (Morocco) Oil Shale with High Density Polyethylene. Oil Shale, 24, 15-33.
https://doi.org/10.3176/oil.2007.1.04
[17]  Slopiecka, K., Bartocci, P. and Fantozzi, F. (2012) Thermogravimetric Analysis and Kinetic Study of Poplar Wood Pyrolysis. Applied Energy, 97, 491-497.
https://doi.org/10.1016/j.apenergy.2011.12.056
[18]  Gaur, S. and Reed, T. (1998) Thermal Data for Natural and Synthetic Fuels. Marcel Dekker, Inc., New York.
[19]  Volpe, R., Messineo, A., Millan, M., Volpe, M. and Kandiyoti, R. (2015) Assessment of Olive Waste as Energy Source: Pyrolysis, Torrefaction and the Key Role of H Loss in Thermal Breakdown. Energy, 82, 119-127.
https://doi.org/10.1016/j.energy.2015.01.011
[20]  Blázquez, G., Caleo, M., Martinez-Garcia, C., Cotes, M.T., Ronda, M. and Marti’n-Lara, M.A. (2014) Characterization and Modeling of Pyrolysis of Two-Phase Olive Mill Solid Waste. Fuel Processing Technology, 126, 104-111.
https://doi.org/10.1016/j.fuproc.2014.04.020
[21]  Miranda, T., Esteban, A., Rojas, S., Montero, I. and Ruiz, A. (2008) Combustion Analysis of Different Olive Residues. International Journal of Molecular Sciences, 9, 512-525.
https://doi.org/10.3390/ijms9040512
[22]  Culp, A.W. (1991) Principle of Energy Conversion. 2nd Edition, McGraw-Hill, New York.
[23]  Ouazzane, H., Laajine, F., El Yamani, M., El Hilaly, J., Rharrabti, Y., Amarouch, M.Y. and Mazouzi, D. (2017) Olive Mill Solid Waste Characterization and Recycling Opportunities: A Review. Journal of Materials and Environmental Sciences, 8, 2632-2650.
http://www.jmaterenvironsci.com/
[24]  Khraisha, Y.H. (2022) Energetic Study on Jordanian Olive Cake and Woody Biomass Materials. Journal of Power and Energy Engineering, 10, 1-13.
https://doi.org/10.4236/jpee.2022.102001
[25]  Chouchene, A., Jeguirim, M., Khiari, B., Zagrouba, F. and Trouvé, G. (2010) Thermal Degradation of Olive Solid Waste: Influence of Particle Size and Oxygen Concentration. Resources, Conservation and Recycling, 54, 271-277.
https://doi.org/10.1016/j.resconrec.2009.04.010
[26]  Ducom, G., Gautier, M., Pietraccini, M., Tagutchou, J.P., Lebouil, D. and Gourdon, R. (2020) Comparative Analyses of Three Olive Mill Solid Residues from Different Countries and Processes for Energy Recovery by Gasification. Renewable Energy, 145, 180-189.
https://doi.org/10.1016/j.renene.2019.05.116
[27]  Gomez-Martin, A., Chacartegui, R., Ramirez-Rico, J. and Martinez-Fernandez, J. (2018) Performance Improvement in Olive Stone’s Combustion from a Previous Carbonization Transformation. Fuel, 228, 254-262.
https://doi.org/10.1016/j.fuel.2018.04.127
[28]  Nassar, M.M. (1988) Thermal Analysis Kinetics of Bagasse and Rice Straw. Energy Sources, 20, 831-837.
https://doi.org/10.1080/00908319808970101
[29]  Örfao, J.J.M., Antunes, F.J.A. and Figueiredo, J.L. (1999) Pyrolysis Kinetics of Lignocellulosic Materials—Three Independent Reactions Model. Fuel, 78, 349-358.
https://doi.org/10.1016/S0016-2361(98)00156-2
[30]  García-Ibañez, P., Sánchez, M. and Cabanillas, A. (2006) Thermogravimetric Analysis of Olive-Oil in Air Atmosphere. Fuel Processing Technology, 87, 103-107.
https://doi.org/10.1016/j.fuproc.2005.08.005
[31]  Brebu, M. and Vasile, C. (2010) Thermal Degradation of Lignin—A Review. Cellulose Chemical Technology, 44, 353-363.
https://www.researchgate.net/publication/237090542_Thermal_degradation_of_lignin_-_A_Review#fullTextFileContent
[32]  Jankovic, B., Radojevic, M.B., Balac, M., Stojiljkovic, D.D. and Manic, N.G. (2020) Thermogravimetric Study on the Pyrolysis Kinetic Mechanism of Waste Biomass from Fruit Processing Industry. Thermal Science, 24, 4221-4239.
https://doi.org/10.2298/TSCI200213191J
[33]  Mansaray, K.G. and Ghaly, A.E. (1998) Thermal Degradation of Rice Husks in Nitrogen Atmosphere. Bioresource Technology Journal, 65, 13-20.
https://doi.org/10.1016/S0960-8524(98)00031-5
[34]  Guedes, R.E., Luna, A.S. and Torres, A.R. (2018) Operating Parameters for Bio-Oil Production in Biomass Pyrolysis: A Review. Journal of Analytical and Applied Pyrolysis, 129, 134-149.
https://doi.org/10.1016/j.jaap.2017.11.019
[35]  Mourant, D., Lievens, C., Gunawan, R., Wang, Y., Hu, X., Wu, L., Syed-Hassan, S.S.A. and Li, C.Z. (2013) Effects of Temperature on the Yields and Properties of Bio-Oil from the Fast Pyrolysis of Mallee Bark. Fuel, 108, 400-408.
https://doi.org/10.1016/j.fuel.2012.12.018
[36]  Jauhiainen, J., Conesa, J.A., Font, R. and Martın-Gullón, I. (2004) Kinetics of the Pyrolysis and Combustion of Olive Oil Solid Waste. Journal of Analytical and Applied Pyrolysis, 72, 9-15.
https://doi.org/10.1016/j.jaap.2004.01.003
[37]  Alrawashdeh, K.A., Slopiecka, K., Alshorman, A.A., Bartocci, P. and Fantozzi, F. (2017) Pyrolytic Degradation of Olive Waste Residue (OWR) by TGA: Thermal Decomposition Behavior and Kinetic Study. Journal of Energy and Power Engineering, 11, 497-510.
https://doi.org/10.17265/1934-8975/2017.08.001
[38]  Wzorek, M., Junga Ersel Yilmaz, E. and Bozhenko, B. (2021) Thermal Decomposition of Olive-Mill Byproducts: A TG-FTIR Approach. Energies, 14, Article 4123.
https://doi.org/10.3390/en14144123

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413