全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进被囊群算法的四旋翼姿态控制PID整定
PID Parameter Tuning of Quadrotor Attitude Control Based on Mended Tunicate Swarm Algorithm

DOI: 10.12677/JSTA.2024.122020, PP. 175-186

Keywords: 四旋翼无人机,姿态控制,PID控制,参数整定,改进被囊群算法
Quadrotor UAV
, Attitude Control, PID Control, Parameter Tuning, Mended Tunicate Swarm Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

四旋翼无人机模型具有非线性、强耦合、欠驱动的特性,其姿态控制的PID参数整定非常困难。针对上述问题,将被囊群算法引入姿态控制器,进行参数优化。并在原有算法的基础上引入混沌初始化、逐维反向学习策略和自适应权重因子,以此来提高算法的全局探索能力和局部开发能力,从而有效地对PID参数进行整定。最后,通过在MATLAB/Simulink中搭建模型并进行虚拟仿真。经测试验证,运用该算法优化的PID控制器有更好的控制精度和效率。
The Quadrotor UAV model has the characteristics of non-linear, strong coupling and underactuated, and it is very difficult to tuning the PID parameters of its attitude control. To solve these problems, The Tunicate Swarm Algorithm is introduced into the attitude controller to optimize the parameters. On the basis of the original algorithm, chaotic initialization, the opposition-based learning strategy and adaptive weight factor are introduced to improve the global exploration ability and local development ability of the algorithm, so as to effectively tune the PID parameters. Finally, the model was built and virtually simulated in MATLAB/Simulink. The test results show that the PID controller optimized by this algorithm has better control accuracy and efficiency.

References

[1]  Dong, J. and He, B. (2019) Novel Fuzzy PID-Type Iterative Learning Control for Quadrotor UAV. Sensors, 19, Article 24.
https://doi.org/10.3390/s19010024
[2]  Li, X., Qu S.R. and Cai, L. (2014) Studing of PID Parameter Optimi-zation Method for Attitude Controller of Quadrotor. Journal of Computational Information Systems, 10, 7805-7812.
[3]  Putra, N.P., Maulany, G.J. and Manggau, F.X. (2019) Attitude Quadrotor Control System with Opti-mization of PID Parameters Based on Fast Genetic Algorithm. International Journal of Mechanical Engineering & Technology, 10, 335-343.
[4]  Hasseni, S.-E.-I., Abdou, L. and Glida, H.-E. (2021) Parameters Tuning of a Quadrotor PID Controllers by Using Nature-Inspired Algorithms. Evolutionary Intelligence, 14, 61-73.
https://doi.org/10.1007/s12065-019-00312-8
[5]  Meier, L., et al. (2012) PIXHAWK: A Micro Aerial Vehicle De-sign for Autonomous Flight Using Onboard Computer Vision. Autonomous Robots, 33, 21-39.
https://doi.org/10.1007/s10514-012-9281-4
[6]  Kaur, S., Awasthi, L.K., et al. (2020) Tunicate Swarm Algorithm: A New Bio-Inspired Based Metaheuristic Paradigm for Global Optimization. Engineering Applications of Artificial Intel-ligence, 90, Article ID: 103541
https://doi.org/10.1016/j.engappai.2020.103541
[7]  Yang, J.W., Liu, Z., Zhang, X., et al. (2022) Elite Chaotic Manta Ray Algorithm Integrated with Chaotic Initialization and Opposition-Based Learning. Mathematics, 10, Article 2960.
https://doi.org/10.3390/math10162960
[8]  罗仕杭, 何庆. 融合Sin混沌和分段权值的阿基米德优化算法[J]. 计算机工程与应用, 2022, 58(14): 63-72.
[9]  Park, S.-Y. And Lee, J.-J. (2016) Stochastic Opposition-Based Learning Using a Beta Distribution in Differential Evolution. IEEE Transactions on Cybernetics, 46, 2184-2194.
https://doi.org/10.1109/TCYB.2015.2469722
[10]  张达敏, 徐航, 王依柔, 宋婷婷, 王栎桥. 嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J]. 控制与决策, 2021, 36(5): 1173-1180
[11]  梁建明, 何庆. 莱维飞行和反馈策略的自适应被囊群算法[J]. 小型微型计算机系统, 2023, 44(1): 68-74.
[12]  康日晖, 马珺, 贾华宇. 自适应粒子群在四旋翼PID参数优化中的应用[J]. 计算机仿真, 2018, 35(3): 29-33.
[13]  毛清华, 张强. 融合柯西变异和反向学习的改进麻雀算法[J]. 计算机科学与探索, 2021, 15(6): 1155-1164.
[14]  翁发禄, 郭毅, 李胜飞. 基于IBS和LADRC的四旋翼飞行器轨迹跟踪控制[J]. 电光与控制, 2019, 26(6): 65-69+74.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413