全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

聚对苯二甲酸乙二醇酯解聚为高附加值化学品的研究进展
Research Progress in Depolymerization of Polyethylene Terephthalate into High Value-Added Chemicals

DOI: 10.12677/HJCET.2024.142011, PP. 98-105

Keywords: 聚对苯二甲酸乙二醇酯,催化解聚,化学回收
Polyethylene Terephthalate
, Catalytic Depolymerization, Chemical Recycling

Full-Text   Cite this paper   Add to My Lib

Abstract:

聚对苯二甲酸乙二醇酯(PET)因其具有透明度高、重量轻和无毒等特性,广泛应用于饮料瓶、纺织品、塑料薄膜和食品包装等领域。随着PET的生产和消费快速增长,大量废弃PET造成的环境污染问题日益突出。本文概述了PET化学解聚为高附加值化学品的方法,主要包括水解法﹑醇解法﹑糖解法、胺解法和氢解法,同时讨论了不同化学解聚方法的优缺点,并对未来PET升级回收进行了展望。
Polyethylene terephthalate (PET) is widely used in beverage bottles, textiles, plastic films, and food packaging due to its high transparency, light weight, and non-toxic properties. With the rapid growth of PET production and consumption, the environmental pollution caused by a large amount of waste PET has become increasingly prominent. In this paper, the methods of chemical depolymerization of PET into high value-added chemicals are summarized, including hydrolysis, methanolysis, glycolysis, aminolysis and hydrogenolysis. The advantages and disadvantages of different chemical depolymerization methods are discussed, and the future upgrading and recycling of PET are prospected.

References

[1]  Geyer, R., Jambeck, J.R. and Law, K.L. (2017) Production, Use, and Fate of All Plastics Ever Made. Science Ad-vances, 3, e1700782.
https://doi.org/10.1126/sciadv.1700782
[2]  Xin, J., Zhang, Q. Huang, J., Huang, R., et al. (2021) Progress in the Catalytic Glycolysis of Polyethylene Terephthalate. Journal of Environmental Manage-ment, 296, Article ID: 113267.
https://doi.org/10.1016/j.jenvman.2021.113267
[3]  Vollmer, I., Jenks, M.J., Roelands, M.C., et al. (2020) Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angewandte Chemie International Edition, 59, 15402-15423.
https://doi.org/10.1002/anie.201915651
[4]  Rorrer, N.A., Nichol-son, S., Carpenter, A., et al. (2019) Combining Reclaimed PET with Bio-Based Monomers Enables Plastics Upcy-cling. Joule, 3, 1006-1027.
https://doi.org/10.1016/j.joule.2019.01.018
[5]  Jiang, M.K., Wang, X.L., Xi, W.L., et al. (2024) Chemical Catalytic Upgrading of Polyethylene Terephthalate Plastic Waste into Value-Added Materials, Fuels and Chemicals. Science of the Total Environment, 912, Article ID: 169342.
https://doi.org/10.1016/j.scitotenv.2023.169342
[6]  Nisticò, R., (2020) Polyethylene Terephthalate (PET) in the Packaging Industry. Polymer Testing, 90, Article ID: 106707.
https://doi.org/10.1016/j.polymertesting.2020.106707
[7]  Shojaei, B., Abtahi, M. and Najafi, M. (2020) Chemical Recycling of PET: A Stepping-Stone toward Sustainability. Polymers Advanced Technologies, 31, 2912-2938.
https://doi.org/10.1002/pat.5023
[8]  Chu, M.Y., Liu, Y., Lou, X.X., et al. (2022) Rational Design of Chemical Catalysis for Plastic Recycling. ACS Catalysis, 12, 4659-4679.
https://doi.org/10.1021/acscatal.2c01286
[9]  Zheng, K., Wu, Y., Hu, Z., et al. (2023) Progress and Perspective for Conversion of Plastic Wastes into Valuable Chemicals. Chemical Society Reviews, 52, 8-29.
https://doi.org/10.1039/D2CS00688J
[10]  George, N. and Kurian, T. (2014) Recent Developments in the Chemical Recycling of Postconsumer Poly (Ethylene Terephthalate) Waste. Industrial &Engineering Chemistry Research, 53, 14185-14198.
https://doi.org/10.1021/ie501995m
[11]  Raheem, A.B., Noor, Z.Z., Hassan, A., et al. (2019) Current Devel-opments in Chemical Recycling of Post-Consumer Polyethylene Terephthalate Wastes for New Materials Production: A Review. Journal of Cleaner Production, 225, 1052-1064.
https://doi.org/10.1016/j.jclepro.2019.04.019
[12]  Cano, I., Martin, C., Fernandes, J.A., et al. (2020) Para-magnetic Ionic Liquid-Coated SiO2@Fe3O4Nanoparticles—The Next Generation of Magnetically Recoverable Nanocatalysts Applied in the Glycolysis of PET. Applied Catalysis B: Environmental, 260, Article ID: 118110.
https://doi.org/10.1016/j.apcatb.2019.118110
[13]  Sheel, A. and Pant, D. (2018) 6-Chemical Depolymeriza-tion of Polyurethane Foams via Glycolysis and Hydrolysis. In: Thomas, S., et al., Eds., Recycling of Polyurethane Foams, William Andrew, Norwich, 67-75.
https://doi.org/10.1016/B978-0-323-51133-9.00006-1
[14]  Dutt, K. and Soni, R.K. (2013) A Review on Synthesis of Value Added Products from Polyethylene Terephthalate (PET) Waste. Polymer Science Series B, 55, 430-452.
https://doi.org/10.1134/S1560090413070075
[15]  Yoshioka, T., Okayama, N. and Okuwaki, A. (1998) Kinetics of Hydrolysis of PET Powder in Nitric Acid by a Modified Shrinking-Core Model. Industrial & Engineering Chemistry Research, 37, 336-340.
https://doi.org/10.1021/ie970459a
[16]  Yoshioka, T., Motoki, T. and Okuwaki, A. (2001) Kinetics of Hy-drolysis of Poly (Ethylene Terephthalate) Powder in Sulfuric Acid by a Modified Shrinking-Core Model. Industrial & Engineering Chemistry Research, 40, 75-79.
https://doi.org/10.1021/ie000592u
[17]  Mancini, S.D. and Zanin, M. (2007) Post Consumer Pet Depolymeri-zation by Acid Hydrolysis. Polymer-Plastics Technology and Engineering, 46, 135-144.
https://doi.org/10.1080/03602550601152945
[18]  Yoshioka, T., Sato, T. and Okuwaki, A. (1944) Hydrolysis of Waste PET by Sulfuric Acid at 150°C for Achemical Recycling. Journal of Applied Polymer Science, 52, 1353-1355.
https://doi.org/10.1002/app.1994.070520919
[19]  Wang, Y.Q., Zhang, Y., Song, H.Y., et al. (2019) Zinc-Catalyzed Ester Bond Cleavage: Chemical Degradation of Polyethylene Terephthalate. Journal of Cleaner Production, 208, 1469-1475.
https://doi.org/10.1016/j.jclepro.2018.10.117
[20]  Liu, Y.P., Wang, M.X. and Pan, Z.Y. (2012) Catalytic De-polymerization of Polyethylene Terephthalate in Hot Compressed Water. Journal of Supercritical Fluids, 62, 226-231.
https://doi.org/10.1016/j.supflu.2011.11.001
[21]  Mishra, S., Zope, V.S. and Goje, A.S. (2002) Ki-netic and Thermodynamic Studies of Depolymerisation of Poly (Ethylene Terephthalate) by Saponification Reac-tion. Polymer International, 51, 1310-1315.
https://doi.org/10.1002/pi.873
[22]  Paliwal, N.R. and Mungray, A.K. (2013) Ultrasound Assisted Alkaline Hydrolysis of Poly (Ethylene Terephthalate) in Presence of Phase Transfer Catalyst. Polymer Degradation and Stability, 98, 2094-2101.
https://doi.org/10.1016/j.polymdegradstab.2013.06.030
[23]  Sako, T., Okajima, I., Sugeta, T., et al. (2000) Recovery of Constituent Monomers from Polyethylene Terephthalate with Supercritical Methanol. Polymer Inter-national, 32, 178-181.
https://doi.org/10.1295/polymj.32.178
[24]  Mishra, S. and Goje, A. (2003) Kinetic and Thermodynamic Study of Methanolysis of Poly (Ethylene Terephthalate) Waste Powder. Polymer International, 52, 337-342.
https://doi.org/10.1002/pi.1147
[25]  Du, J.T., Sun, Q., Zeng, X.F., et al. (2020) ZnO Nanodispersion as Pseudohomogeneous Catalyst for Alcoholysis of Polyethylene Terephthalate. Chemical Engineering Science, 220, Article ID: 115642.
https://doi.org/10.1016/j.ces.2020.115642
[26]  Kurokawa, H., Ohshima, M., Sugiyama, K., et al. (2003) Methanolysis of Polyethylene Terephthalate (PET) in the Presence of Aluminium Tiisopropoxide Catalyst to Form Dimethyl Terephthalate and Ethylene Glycol. Polymer Degradation and Stability, 79, 529-533.
https://doi.org/10.1016/S0141-3910(02)00370-1
[27]  Pham, D.D. and Cho, J. (2021) Low-Energy Catalytic Methanolysis of Poly (Ethylene Terephthalate). Green Chemistry, 23, 511-525.
https://doi.org/10.1039/D0GC03536J
[28]  Wang, Q., Geng, Y.R., Lu, X.M., et al. (2015) First-Row Transition Metal-Containing Ionic Liquids as Highly Active Catalysts for the Glycolysis of Poly (Ethylene Terephthalate) (PET). ACS Sustainable Chemistry & Engineering, 3, 340-348.
https://doi.org/10.1021/sc5007522
[29]  Le, N.H., Van, T.T.N., Shong, B., et al. (2022) Low-Temperature Glycolysis of Polyethylene Terephthalate. ACS Sustainable Chemistry & Engineering, 10, 17261-17273.
https://doi.org/10.1021/acssuschemeng.2c05570
[30]  Shirazimoghaddam, S., Amin, I., Albanese, J.A.F., et al. (2023) Chemical Recycling of Used PET by Glycolysis Using Niobia-Based Catalysts. ACS Engineering Au, 3, 37-44.
https://doi.org/10.1021/acsengineeringau.2c00029
[31]  Fehér, Z., Kiss, J., Kisszékelyi, P., et al. (2022) Optimisation of PET Glycolysis by Applying Recyclable Heterogeneous Organocatalysts. Green Chemistry, 24, 8447-8459.
https://doi.org/10.1039/D2GC02860C
[32]  Wang, Q., Yao, X.Q., Geng, Y.R., et al. (2015) Deep Eutectic Solvents as Highly Active Catalysts for the Fast and Mild Glycolysis of Poly (Ethylene Terephthalate) (PET). Green Chemistry, 17, 2473-2479.
https://doi.org/10.1039/C4GC02401J
[33]  Parab, Y.S., Shah, R.V. and Shukla, S.R. (2012) Microwave Irra-diated Synthesis and Characterization of 1, 4-Phenylene Bis-Oxazoline Form Bis-(2-Hydroxyethyl) Terephthalamide Obtained by Depolymerization of Poly (Ethylene Terephthalate) (PET) Bottle Wastes. Current Chemistry Letters, 1, 81-90.
https://doi.org/10.5267/j.ccl.2012.3.003
[34]  Palekar, V.S., Shah, R.V. and Shukla, S.R. (2012) Ionic Liq-uid-Catalyzed Aminolysis of Poly (Ethylene Terephthalate) Waste. Journal of Applied Polymer Science, 126, 1174-1181.
https://doi.org/10.1002/app.36878
[35]  More, A.P., Kute, R.A. and Mhaske, S.T. (2014) Chemical Conversion of PET Waste Using Ethanolamine to Bis (2-Hydroxyethyl) Terephthalamide (BHETA) through Ami-nolysis and a Novel Plasticizer for PVC. Iranian Polymer Journal, 23, 59-67.
https://doi.org/10.1007/s13726-013-0200-0
[36]  Shukla, S.R. and Harad, A.M. (2006) Aminolysis of Poly-ethylene Terephthalate Waste. Polymer Degradation and Stability, 91, 1850-1854.
https://doi.org/10.1016/j.polymdegradstab.2005.11.005
[37]  Vinitha, V., Preeyanghaa, M., Anbarasu, M., et al. (2022) Aminolytic Depolymerization of Polyethylene Terephthalate Wastes Using Sn-Doped ZnO Nanoparticles. Journal of Polymers and the Environment, 30, 3566-3581.
https://doi.org/10.1007/s10924-022-02455-9
[38]  Ye, M.X., Li, Y.R., Yang, Z.R., et al. (2023) Rutheni-um/TiO2-Catalyzed Hydrogenolysis of Polyethylene Terephthalate: Reaction Pathways Dominated by Coordination Environment. Angewandte Chemie International Edition, 62, e202301024.
https://doi.org/10.1002/anie.202301024
[39]  Jing, Y.X., Wang, Y.Q., Furukawa, S., et al. (2021) Towards the Circular Economy: Converting Aromatic Plastic Waste back to Arenes over Ru/Nb2O5 Catalyst. Angewandte Chemie International Edition, 60, 5527-5535.
https://doi.org/10.1002/anie.202011063
[40]  Tang, H., Li, N., Li, G.Y., et al. (2019) Synthesis of Gasoline and Jet Fuel Range Cycloalkanes and Aromatics from Poly (Ethylene Terephthalate) Waste. Green Chemistry, 21, 2709-2719.
https://doi.org/10.1039/C9GC00571D
[41]  Hongkailers, S., Jing, Y.X., Wang, Y.Q., et al. (2021) Recovery of Arenes from Polyethylene Terephthalate (PET) over a Co/TiO2 Catalyst. ChemSusChem, 14, 4330-4339.
https://doi.org/10.1002/cssc.202100956
[42]  Gao, Z.W., Ma, B., Chen, S., et al. (2022) Converting Waste PET Plastics into Automobile Fuels and Antifreeze Components. Nature Communications, 13, Article No. 3343.
https://doi.org/10.1038/s41467-022-31078-w

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133