全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

镍钙铝复合氧化物对废碱液催化氧化脱硫性能的研究
Catalytic Oxidative Desulfurization of Waste Alkali Liquid with Nickel Calcium Aluminum Composite Oxides

DOI: 10.12677/HJCET.2024.142012, PP. 106-114

Keywords: 含硫废碱液,镍基催化剂,钙铝水滑石,脱硫,负载型催化剂
Sulfur-Containing Waste Alkali Liquid
, Nickel-Based Catalyst, Calcium Aluminum Hydrotalcite, Desulfurization, Supported Catalyst

Full-Text   Cite this paper   Add to My Lib

Abstract:

以过渡金属硫酸盐MSO4 (M = Ni, Cu, Mn, Co)为催化剂活性组分,以钙铝水滑石为载体,通过浸渍法负载然后通过焙烧制得非均相负载型催化剂。分别对样品进行X射线衍射(XRD),热重量分析(TG)和扫描电子显微镜(SEM)表征,分析催化剂的物相组成及其微观结构。在常温常压下,以空气为氧化剂,对含硫废碱液进行催化氧化脱硫性能的研究,分别筛选金属前驱体种类、载体含量、催化剂的添加量、催化剂焙烧、反应温度等因素对脱硫率的影响。结果表示以镍基为催化剂活性组分,钙铝水滑石为载体,通过浸渍法负载后经600℃焙烧5 h制得催化剂,负载比为3%。在鼓气量2.5 L/min,温度85℃条件下,处理初始硫离子浓度为6000 ppm,反应2 h脱硫率可达95%。催化剂重复反应12次以上,催化活性基本不变,具有很好的稳定性。
A heterogeneous supported catalyst is prepared using transition metal sulfate MSO4 as an active component and hydrocalumite as a carrier. The catalyst is loaded by impregnation and then cal-cined. An analysis of the phase composition and microstructure of the catalyst was conducted using X-ray diffraction (XRD), thermo gravimetric analysis (TG), and scanning electron micros-copy (SEM). The catalytic oxidative desulfurization performance of sulfur-containing waste al-kali liquid was evaluated at normal temperature and pressure, using air as the oxidant. The type of catalyst, the amount of catalyst addition, the roasting temperature of the catalyst, as well as other factors were screened for their effects on the desulfurization rate. A nickel sulfate catalyst is employed as an active component, and calcium-aluminum hydrotalcite serves as the carrier. The catalyst was prepared via the impregnation method, and it was then roasted for five hours at 600°C. The initial concentrations of sulfur ions were 6000 ppm, and the reduction rate reached 95% after two hours. It is noteworthy that the catalyst was able to repeat the reaction over 12 times with essentially unchanged catalytic activity.

References

[1]  王金亮. 废碱液脱硫氧化工艺工程化研究[D]: [硕士学位论文]. 西安: 西北大学, 2019.
[2]  Vaiopoulou, E., Melidis, P. and Aivasidis, A. (2005) Sulfide Removal in Wastewater from Petrochemical Industries by Autotrophic Denitrification. Water Research, 39, 4101-4109.
https://doi.org/10.1016/j.watres.2005.07.022
[3]  游韶玮, 张欣, 毛祥, 等. 工业废碱处理及再利用研究进展[J]. 湿法冶金, 2023, 42(2): 107-115.
[4]  邓勇. 废碱液烟气脱硫技术的研究与应用[D]: [硕士学位论文]. 大庆: 东北石油大学, 2019.
[5]  王凤荣, 马克存, 王天成, 等. 沉淀-氧化法处理乙烯废碱液[J]. 化工进展, 2019, 38(8): 3896-3901.
[6]  李俊, 刘晓晶, 张哲, 等. 湿式空气催化氧化处理废碱液的研究进展[J]. 应用化工, 2021, 50(11): 3161-3164.
[7]  王婷婷. 硫化钠废碱液的催化氧化研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2012.
[8]  王嘉, 李文翠, 吴凡, 等. NiMo/Al2O3催化剂活性组分分布调控及其加氢脱硫应用[J]. 化工进展, 2023: 1-15.
[9]  张正, 吕克洪, 蔡建成, 等. 活性炭脱硫脱硝技术在烧结中的应用[J]. 冶金设备, 2023(S1): 103-105.
[10]  尹佳彬. Co-Mo负载型沸石催化噻吩脱硫的理论研究[D]: [硕士学位论文]. 上海: 上海应用技术大学, 2022.
[11]  Choi, W., Choi, J., Hwang, H., et al. (2022) Transformation of Natural Pollucite into Hexacelsian under High Pressure and Temperature. Physics and Chemistry of Minerals, 49, Article No. 15.
https://doi.org/10.1007/s00269-022-01190-w
[12]  Srivastava, N. and Srivastava, P.C. (2010) Realizing NiO Nanocrystals from a Simple Chemical Method. Bulletin of Materials Science, 33, 653-656.
https://doi.org/10.1007/s12034-011-0142-0
[13]  Singh, J.P., Lim, W.C., Won, S.O., et al. (2018) Synthesis and Characterization of Some Alkaline-Earth-Oxide Nanoparticles. Journal of the Korean Physical Society, 72, 890-899.
https://doi.org/10.3938/jkps.72.890

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413