全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中空玻璃微珠对超高性能混凝土的阻抗提升研究
Research on Impedance Enhancement of Ultra-High Performance Concrete by Hollow Glass Microspheres

DOI: 10.12677/HJCE.2024.133027, PP. 238-249

Keywords: 超高性能混凝土,中空玻璃微珠,交流阻抗谱,等效电路模型
Ultra-High Performance Concrete
, Hollow Glass Microspheres, AC Impedance Spectroscopy, Equivalent Circuit Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

在地铁轨道等地下结构中,为预防跨步电压造成的安全隐患问题,采用中空玻璃微珠制备了高阻抗UHPC。结果表明:中空玻璃微珠能够形成新的基体–玻璃外壳界面,降低基体的电导率。掺入15%的中空玻璃微珠后,UHPC的电阻率达到了14.39 kΩ?m,较对照组提高了101.72%。
In order to prevent the safety hazard problem caused by step voltage in subway structures such as subway tracks, high-impedance UHPC was prepared by using hollow glass microspheres. The results show that hollow glass microspheres can form a new substrate-glass shell interface and reduce the conductivity of the substrate. The resistivity of UHPC reached 14.39 kΩ?m after 15% of hollow glass microspheres were doped, which was 101.72% higher than that of the control.

References

[1]  林江, 唐华, 于海学. 地铁迷流腐蚀及其防护技术[J]. 建筑材料学报, 2002, 5(1): 72-76.
[2]  陶源. 地铁站台绝缘层新材料新工艺的运用[J]. 中华建设, 2012(7): 280-281.
[3]  李贤妮. 地铁站台敷设绝缘层的必要性和方式[J]. 安徽建筑, 2013, 20(1): 113-114.
[4]  李鲲鹏, 饶美婉. 城市轨道交通站台门绝缘安装电阻值分析[J]. 建筑电气, 2015, 34(6): 22-25.
[5]  赵振江, 黄明才. 地铁站台屏蔽门的绝缘与接地处理[J]. 城市轨道交通研究, 2012, 15(7): 110-111+122.
[6]  杨伟松. 掺合料对水泥石电阻率影响的试验研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2010.
[7]  Hussain, S.E. and Rasheeduzzafar (1995) Corrosion Resistance Performance of Fly Ash Blended Cement Concrete. Fuel & Energy Abstracts, 36, 96.
https://doi.org/10.1016/0140-6701(95)93047-7
[8]  Baweja, D., Roper, H. and Sirvivatnanon, V. (1996) Corrosion of Steel in Marine Concrete: Long-Term Half-Cell Potential and Resistivity Data. ACI Symposium Publication, 163, 89-110.
[9]  Dahal, M., Liyew, G., Kim, H.-K., et al. (2022) Characteristics of Ultra-High Performance Lightweight Concrete Containing Hollow Glass Microspheres under Severe Loading Conditions. Construction and Building Materials, 356, Article ID: 129312.
https://doi.org/10.1016/j.conbuildmat.2022.129312
[10]  Martín, C.M., Scarponi, N.B., Villagrán, Y.A., et al. (2021) Pozzolanic Activity Quantification of Hollow Glass Microspheres. Cement and Concrete Composites, 118, Article ID: 103981.
https://doi.org/10.1016/j.cemconcomp.2021.103981
[11]  Lu, J.-X., Shen, P., Zheng, H., et al. (2021) Development and Characteristics of Ultra High-Performance Lightweight Cementitious Composites (UHP-LCCs). Cement and Concrete Research, 145, Article ID: 106462.
https://doi.org/10.1016/j.cemconres.2021.106462
[12]  Wang, L., Aslani, F., Hajirasouliha, I., et al. (2020) Ultra-Lightweight Engineered Cementitious Composite Using Waste Recycled Hollow Glass Microspheres. Journal of Cleaner Production, 249, Article ID: 119331.
https://doi.org/10.1016/j.jclepro.2019.119331
[13]  Brooks, A.L., Zhou, H. and Hanna, D. (2018) Comparative Study of the Mechanical and Thermal Properties of Lightweight Cementitious Composites. Construction and Building Materials, 159, 316-328.
https://doi.org/10.1016/j.conbuildmat.2017.10.102
[14]  Lee, N., Pae, J., Kang, S.-H., et al. (2022) Development of High Strength & Lightweight Cementitious Composites Using Hollow Glass Microsphere in a Low Water-to-Cement Matrix. Cement and Concrete Composites, 130, Article ID: 104541.
https://doi.org/10.1016/j.cemconcomp.2022.104541
[15]  Krakowiak, K.J., Nannapaneni, R.G., Moshiri, A., et al. (2020) Engineering of High Specific Strength and Low Thermal Conductivity Cementitious Composites with Hollow Glass Microspheres for High-Temperature High-Pressure Applications. Cement and Concrete Composites, 108, Article ID: 103514.
https://doi.org/10.1016/j.cemconcomp.2020.103514
[16]  Mendes, S.E.S., Oliveira, R.L.N., Cremonez, C., et al. (2018) Electrical Resistivity as a Durability Parameter for Concrete Design: Experimental Data versus Estimation by Mathematical Model. Construction and Building Materials, 192, 610-620.
https://doi.org/10.1016/j.conbuildmat.2018.10.145
[17]  Fan, S., Li, X. and Li, M. (2018) The Effects of Damage and Self-Healing on Impedance Spectroscopy of Strain-Hardening Cementitious Materials. Cement and Concrete Research, 106, 77-90.
https://doi.org/10.1016/j.cemconres.2018.01.016
[18]  Dong, S., Han, B., Ou, J., et al. (2016) Electrically Conductive Behaviors and Mechanisms of Short-Cut Super-Fine Stainless Wire Reinforced Reactive Powder Concrete. Cement and Concrete Composites, 72, 48-65.
https://doi.org/10.1016/j.cemconcomp.2016.05.022
[19]  Suryanto, B., Mccarter, W.J., Starrs, G., et al. (2016) Electrochemical Immittance Spectroscopy Applied to a Hybrid PVA/Steel Fiber Engineered Cementitious Composite. Materials & Design, 105, 179-189.
https://doi.org/10.1016/j.matdes.2016.05.037
[20]  Mccarter, W.J., Starrs, G. and Chrisp, T.M. (1999) Immittance Spectra for Portland Cement/Fly Ash-Based Binders during Early Hydration. Cement and Concrete Research, 29, 377-387.
https://doi.org/10.1016/S0008-8846(98)00209-9
[21]  Song, G.L. (2000) Equivalent Circuit Model for AC Electrochemical Impedance Spectroscopy of Concrete. Cement and Concrete Research, 30, 1723-1730.
https://doi.org/10.1016/S0008-8846(00)00400-2
[22]  何倍, 陈庆, 何丽, 等. 高阻抗超高性能混凝土的交流阻抗特性及其等效电路模型[J]. 硅酸盐学报, 2022, 50(2): 492-502.
[23]  吴立朋, 阎培渝. 基于交流阻抗技术的混凝土表层氯离子扩散性研究[J]. 建筑材料学报, 2013, 16(1): 12-16.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413