全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

细菌分裂调控Min系统的功能、机制及应用研究进展
Bacterial Division Regulatory Min System: Functions, Mechanisms and Applications

DOI: 10.12677/AMB.2024.131004, PP. 35-48

Keywords: 细菌,细胞分裂调控,Min系统,生物学功能,应用潜力
Bacteria
, Cell Division Regulation, Min System, Biological Functions, Potential Applications

Full-Text   Cite this paper   Add to My Lib

Abstract:

细菌分裂过程及其调控机制是生物学研究中的根本问题。大多数细菌采用“二分裂”方式分裂,分裂过程主要包括染色体复制和分离、FtsZ组装成Z环、细胞内隔膜形成与子细胞形成等关键步骤。Min系统是Z环组装的主要调控系统之一,由FtsZ抑制蛋白MinC、膜结合的ATP酶MinD和结构拓扑因子MinE组成。早期研究大多聚焦在Min系统的细胞分裂调控功能,然而Min系统还作为细胞内部重要的自组装调控系统参与多种细胞代谢生理过程与细胞表型,具有应用开发潜力。本文首先简要概述Min系统的主要类型、结构特征和摆动模型,随后从细胞分裂、细胞运动性、细菌粘附性与致病性、细胞代谢生理过程等方面总结Min系统的生物学功能,最后介绍Min系统在细胞形态工程、抗菌制剂开发和合成生物学应用等方面的应用潜力。
Bacterial division and its regulatory mechanisms are fundamental biological research areas. Most of the bacteria divide by binary fission, and the division process mainly involves chromosome replication and segregation, assembly of FtsZ into Z-ring, intracellular septum formation and daughter cell formation. Min system is one of the major regulatory systems for Z-ring assembly and consists of MinC (FtsZ inhibitory protein), MinD (membrane-bound ATPase), and MinE (structural topology factor). Most of the early studies focused on the roles of Min system on bacterial division. However, recent findings suggest that Min system is an important intracellular self-assembly regulatory system and is involved in a variety of cellular metabolism, physiological processes and other phenotypes. In this review, we first briefly outline the major types, structural features and oscillatory models of the Min system. We then summarize the Min system-regulated biological functions, including cell division, cell motility, bacterial adhesion and pathogenicity, and physiological processes of cellular metabolism. Finaly, we introduce the potential applications of the Min system in cellular morphology engineering, antimicrobial agent development and synthetic biology.

References

[1]  Rowlett, V.W. and Margolin, W. (2015) The Min System and Other Nucleoid-Independent Regulators of Z Ring Positioning. Frontiers in Microbiology, 6, Article No. 478.
https://doi.org/10.3389/fmicb.2015.00478
[2]  Adams, D.W. and Errington, J. (2009) Bacterial Cell Division: Assembly, Maintenance and Disassembly of the Z Ring. Nature Reviews Microbiology, 7, 642-653.
https://doi.org/10.1038/nrmicro2198
[3]  Rothfield, L., Justice, S. and Garcia-Lara, J. (1999) Bacterial Cell Division. Annual Review of Genetics, 33, 423-448.
https://doi.org/10.1146/annurev.genet.33.1.423
[4]  Pichoff, S. and Lutkenhaus, J. (2001) Escherichia coli Division Inhibitor MinCD Blocks Septation by Preventing Z-Ring Formation. Journal of Bacteriology, 183, 6630-6635.
https://doi.org/10.1128/JB.183.22.6630-6635.2001
[5]  Zhou, H., Schulze, R., Cox, S., Saez, C., Hu, Z. and Luthenhaus, J. (2005) Analysis of MinD Mutations Reveals Residues Required for MinE Stimulation of the MinD ATPase and Residues Required for MinC Interaction. Journal of Bacteriology, 187, 629-638.
https://doi.org/10.1128/JB.187.2.629-638.2005
[6]  Zhao, C.R., De Boer, P.A. and Rothfield, L.I. (1995) Proper Placement of the Escherichia coli Division Site Requires Two Functions That Are Associated with Different Domains of the MinE Protein. Proceedings of the National Academy of Sciences of the United States of America, 92, 4313-4317.
https://doi.org/10.1073/pnas.92.10.4313
[7]  Huang, J., Cao, C. and Luthenhaus, J. (1996) Interaction between FtsZ and Inhibitors of Cell Division. Journal of Bacteriology, 178, 5080-5085.
https://doi.org/10.1128/jb.178.17.5080-5085.1996
[8]  Luthenhaus, J. (2007) Assembly Dynamics of the Bacterial MinCDE System and Spatial Regulation of the Z Ring. Annual Review of Biochemistry, 76, 539-562.
https://doi.org/10.1146/annurev.biochem.75.103004.142652
[9]  Patrick, J.E. and Kearns, D.B. (2008) MinJ (YvjD) Is a Topological Determinant of Cell Division in Bacillus subtilis. Molecular Microbiology, 70, 1166-1179.
https://doi.org/10.1111/j.1365-2958.2008.06469.x
[10]  卞丽. 蓝藻细胞分裂关键蛋白FtsZ的性质及其调控[D]: [硕士学位论文]. 西安: 西北大学, 2019.
[11]  Maple, J. and Moller, S.G. (2007) Plastid Division: Evolution, Mechanism and Complexity. Annals of Botany, 99, 565-579.
https://doi.org/10.1093/aob/mcl249
[12]  Wang, X. and Luthenhaus, J. (2003) FtsZ Ring: The Eubacterial Division Apparatus Conserved in Archaebacteria. Molecular Microbiology, 21, 313-320.
https://doi.org/10.1046/j.1365-2958.1996.6421360.x
[13]  Walsh, J.C., Angatmann, C.N., Bisson-Filho, A.W., Garner, E.C., Duggin, I.G. and Curmi, P.M.G. (2019) Division Plane Placement in Pleomorphic Archaea Is Dynamically Coupled to Cell Shape. Molecular Microbiology, 112, 785-799.
https://doi.org/10.1111/mmi.14316
[14]  Szeto, T.H., Rowland, S.L., Rothfield, L.I. and King, G.F. (2002) Membrane Localization of MinD Is Mediated by a C-Terminal Motif That Is Conserved across Eubacteria, Archaea, and Chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 99, 15693-15698.
https://doi.org/10.1073/pnas.232590599
[15]  Cordell, S.C., Aaderson, R.E. and Lowe, J. (2001) Crystal Structure of the Bacterial Cell Division Inhibitor MinC. The EMBO Journal, 20, 2454-2461.
https://doi.org/10.1093/emboj/20.10.2454
[16]  Hu, Z. and Luthenhaus, J. (2000) Analysis of MinC Reveals Two Independent Domains Involved in Interaction with MinD and FtsZ. Journal of Bacteriology, 182, 3965-3971.
https://doi.org/10.1128/JB.182.14.3965-3971.2000
[17]  Shen, B. and Luthenhaus, J. (2009) The Conserved C-Terminal Tail of FtsZ Is Required for the Septal Localization and Division Inhibitory Activity of MinC(C)/MinD. Molecular Microbiology, 72, 410-424.
https://doi.org/10.1111/j.1365-2958.2009.06651.x
[18]  Wu, W., Park, K.T., Holyoak, T. and Luthenhaus, J. (2011) Determination of the Structure of the MinD-ATP Complex Reveals the Orientation of MinD on the Membrane and the Relative Location of the Binding Sites for MinE and MinC. Molecular Microbiology, 79, 1515-1528.
https://doi.org/10.1111/j.1365-2958.2010.07536.x
[19]  Ma, L., King, G.F. and Rothfield, L. (2004) Positioning of the MinE Binding Site on the MinD Surface Suggests a Plausible Mechanism for Activation of the Escherichia coli MinD ATPase during Division Site Selection. Molecular Microbiology, 54, 99-108.
https://doi.org/10.1111/j.1365-2958.2004.04265.x
[20]  Szeto, T.H., Rowland, S.L., Habrukowich, C.L. and King, G.F. (2003) The MinD Membrane Targeting Sequence Is a Transplantable Lipid-Binding Helix. The Journal of Biological Chemistry, 278, 40050-40056.
https://doi.org/10.1074/jbc.M306876200
[21]  Hayashi, I., Oyama, T. and Morikawa, K. (2001) Structural and Functional Studies of MinD ATPase: Implications for the Molecular Recognition of the Bacterial Cell Division Apparatus. The EMBO Journal, 20, 1819-1828.
https://doi.org/10.1093/emboj/20.8.1819
[22]  Huang, K.C., Meir, Y. and Wingreen, N.S. (2003) Dynamic Structures in Escherichia coli: Spontaneous Formation of MinE Rings and MinD Polar Zones. Proceedings of the National Academy of Sciences of the United States of America, 100, 12724-12728.
https://doi.org/10.1073/pnas.2135445100
[23]  King, G.F., Shih, Y.L., Maciejewski, M.W., Bains, N.P., Pan, B., Rowland, S.L., Mullen, G.P. and Rothfield, L.I. (2000) Structural Basis for the Topological Specificity Function of MinE. Nature Structural Biology, 7, 1013-1017.
https://doi.org/10.1038/80917
[24]  Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K. and Schwille, P. (2008) Spatial Regulators for Bacterial Cell Division Self-Organize into Surface Waves in Vitro. Science (New York, N.Y.), 320, 789-792.
https://doi.org/10.1126/science.1154413
[25]  Kruse, K., Howard, M. and Margolin, W. (2007) An Experimentalist’s Guide to Computational Modelling of the Min System. Molecular Microbiology, 63, 1279-1284.
https://doi.org/10.1111/j.1365-2958.2007.05607.x
[26]  Veiga, H., Joege, A.M. and Pinho, M.G. (2011) Absence of Nucleoid Occlusion Effector Noc Impairs Formation of Orthogonal FtsZ Rings during Staphylococcus aureus Cell Division. Molecular Microbiology, 80, 1366-1380.
https://doi.org/10.1111/j.1365-2958.2011.07651.x
[27]  张婷婷. 铜绿假单胞菌调控蛋白MinC与MinD聚合的特性[D]: [硕士学位论文]. 西安: 西北大学, 2021.
[28]  黄海艳. 铜绿假单胞菌FtsZ及其调控系统的生化特性[D]: [硕士学位论文]. 西安: 西北大学, 2018.
[29]  Lorenzoni, A.S.G., Dantas, G.C., Bergsma, T., Ferreira, H. and Scheffers, D.J. (2017) Xanthomonas citri MinC Oscillates from Pole to Pole to Ensure Proper Cell Division and Shape. Frontiers in Microbiology, 8, Article No. 1352.
https://doi.org/10.3389/fmicb.2017.01352
[30]  Yan, Y., Wang, Y., Yang, X., Fang, Y., Cheng, G., Zou, L. and Chen, G. (2022) The MinCDE Cell Division System Participates in the Regulation of Type III Secretion System (T3SS) Genes, Bacterial Virulence, and Motility in Xanthomonas oryzae Pv. oryzae. Microorganisms, 10, Article No. 1549.
https://doi.org/10.3390/microorganisms10081549
[31]  Parti, R.P., Biswas, D., Helgeson, S., Michael, F.S., Cox, A. and Dillon, J.A. (2011) Attenuated Virulence of Min Operon Mutants of Neisseria gonorrhoeae and Their Interactions with Human Urethral Epithelial Cells. Microbes and Infection, 13, 545-554.
https://doi.org/10.1016/j.micinf.2011.01.018
[32]  Macdiarmid, J.A., Mugridge, N.B., Weiss, J.C., Phillips, L., Burn, A.L., Paulin, R.P., Haasdyk, J.E., Dickson, K.A., Brahmbhatt, V.N., Pattison, S.T., James, A.C., Al-Bakri, G., Straw, R.C., Stillman, B., Graham, R.M. and Brahmbhatt, H. (2007) Bacterially Derived 400 nm Particles for Encapsulation and Cancer Cell Targeting of Chemotherapeutics. Cancer Cell, 11, 431-445.
https://doi.org/10.1016/j.ccr.2007.03.012
[33]  Galli, E., Poidevin, M., Le-Bars, R., Desfontaines, J.M., Muresan, L., Paly, E., Yamaichi, Y. and Barre, F.X. (2016) Cell Division Licensing in the Multi-Chromosomal Vibrio cholerae Bacterium. Nature Microbiology, 1, Article No. 16094.
https://doi.org/10.1038/nmicrobiol.2016.94
[34]  Marston, A.L., Thomaides, H.B., Edwards, D.H., Sharpe, M.E. and Errington, J. (1998) Polar Localization of the MinD Protein of Bacillus subtilis and Its Role in Selection of the Mid-Cell Division Site. Genes and Development, 12, 3419-3430.
https://doi.org/10.1101/gad.12.21.3419
[35]  Valen?ikova, R., Krascsenitsova, E., Labajova, N., Makroczyova, J. and Barak, I. (2018) Clostridial DivIVA and MinD Interact in the Absence of MinJ. Anaerobe, 50, 22-31.
https://doi.org/10.1016/j.anaerobe.2018.01.013
[36]  Maccready, J.S., Schossau, J., Oateryoung, K.W. and Ducat, D.C. (2017) Robust Min-System Oscillation in the Presence of Internal Photosynthetic Membranes in Cyanobacteria. Molecular Microbiology, 103, 483-503.
https://doi.org/10.1111/mmi.13571
[37]  Mazouni, K., Domain, F., Cassier-Chauvant, C. and Chauvat, F. (2004) Molecular Analysis of the Key Cytokinetic Components of Cyanobacteria: FtsZ, ZipN and MinCDE. Molecular Microbiology, 52, 1145-1158.
https://doi.org/10.1111/j.1365-2958.2004.04042.x
[38]  Erickson, H.P. and Osawa, M. (2017) FtsZ Constriction Force: Curved Protofilaments Bending Membranes. Sub-Cellular Biochemistry, 84, 139-160.
https://doi.org/10.1007/978-3-319-53047-5_5
[39]  Li, G.W., Burkhardt, D., Gross, C. and Weissman, J.S. (2014) Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources. Cell, 157, 624-635.
https://doi.org/10.1016/j.cell.2014.02.033
[40]  Ghosal, D., Trambaiolo, D., Amos, L.A. and Lowe, J. (2014) MinCD Cell Division Proteins Form Alternating Copolymeric Cytomotive Filaments. Nature Communications, 5, Article No. 5341.
https://doi.org/10.1038/ncomms6341
[41]  Huang, H., Wang, P., Bian, L., Osawa, M., Erickson, H.P. and Chen, Y. (2018) The Cell Division Protein MinD from Pseudomonas aeruginosa Dominates the Assembly of the MinC-MinD Copolymers. The Journal of Biological Chemistry, 293, 7786-7795.
https://doi.org/10.1074/jbc.RA117.001513
[42]  De-Boer, P.A., Crossley, R.E. and Rothfield, L.I. (1988) Isolation and Properties of MinB, a Complex Genetic Locus Involved in Correct Placement of the Division Site in Escherichia coli. Journal of Bacteriology, 170, 2106-2112.
https://doi.org/10.1128/jb.170.5.2106-2112.1988
[43]  Eun, Y.J., Ho, P.Y., Kim, M., Larussa, S., Robert, L., Renner, L.D., Schmid, A., Garner, E. and Amir, A. (2018) Archaeal Cells Share Common Size Control with Bacteria despite Noisier Growth and Division. Nature Communications, 3, 148-154.
https://doi.org/10.1038/s41564-017-0082-6
[44]  Mulder, E. and Woldringh, C.L. (1989) Actively Replicating Nucleoids Influence Positioning of Division Sites in Escherichia coli Filaments Forming Cells Lacking DNA. Journal of Bacteriology, 171, 4303-4314.
https://doi.org/10.1128/jb.171.8.4303-4314.1989
[45]  Thormann, K.M., Beta, C. and Kuhn, M.J. (2022) Wrapped Up: The Motility of Polarly Flagellated Bacteria. Annual Review of Microbiology, 76, 349-367.
https://doi.org/10.1146/annurev-micro-041122-101032
[46]  Howery, K.E., Clemmerl, K.M., Simsek, E., Kim, M. and Rather, P.N. (2015) Regulation of the Min Cell Division Inhibition Complex by the Rcs Phosphorelay in Proteus Mirabilis. Journal of Bacteriology, 197, 2499-2507.
https://doi.org/10.1128/JB.00094-15
[47]  Chiou, P.Y., Luo, C.H., Chang, K.C. and Lin, N.T. (2013) Maintenance of the Cell Morphology by MinC in Helicobacter pylori. PLOS ONE, 8, e71208.
https://doi.org/10.1371/journal.pone.0071208
[48]  Schuhmacher, J.S., Rossmann, F., Dempwolff, F., Knauer, C., Altegoerl, F., Steinchen, W., Dorrich, A.K., Klingl, A., Stephan, M., Linne, U., Thormann, K.M. and Bange, G. (2015) MinD-Like ATPase FlhG Effects Location and Number of Bacterial Flagella during C-Ring Assembly. Proceedings of the National Academy of Sciences of the United States of America, 112, 3092-3097.
https://doi.org/10.1073/pnas.1419388112
[49]  Schuhmacher, J.S., Thormann, K.M. and Bange, G. (2015) How Bacteria Maintain Location and Number of Flagella? FEMS Microbiology Reviews, 39, 812-822.
https://doi.org/10.1093/femsre/fuv034
[50]  Taviti, A.C. and Beuria, T.K. (2019) Bacterial Min Proteins beyond the Cell Division. Critical Reviews in Microbiology, 45, 22-32.
https://doi.org/10.1080/1040841X.2018.1538932
[51]  Parti, R.P., Biswas, D., Wang, M., Liao, M. and Dillon, J.A. (2011) A MinD Mutant of Enterohemorrhagic E. coli O157:H7 Has Reduced Adherence to Human Epithelial Cells. Microbial Pathogenesis, 51, 378-383.
https://doi.org/10.1016/j.micpath.2011.07.003
[52]  Parti, R.P., Horbay, M.A., Liao, M. and Dillon, J.A. (2013) Regulation of MinD by OxyR in Neisseria gonorrhoeae. Research in Microbiology, 164, 406-415.
https://doi.org/10.1016/j.resmic.2013.02.002
[53]  Ahlund, M.K., Ryden, P., Sjostedt, A. and Stoven, S. (2010) Directed Screen of Francisella novicida Virulence Determinants Using Drosophila melanogaster. Infection and Immunity, 78, 3118-3128.
https://doi.org/10.1128/IAI.00146-10
[54]  Su, J., Yang, J., Zhao, D., Kawula, T.H., Banas, J.A. and Zhang, J.R. (2007) Genome-Wide Identification of Francisella tularensis Virulence Determinants. Infection and Immunity, 75, 3089-3101.
https://doi.org/10.1128/IAI.01865-06
[55]  Anthony, L.S., Cowley, S.C., Mdluli, K.E. and Nano, F.E. (1994) Isolation of a Francisella tularensis Mutant That Is Sensitive to Serum and Oxidative Killing and Is Avirulent in Mice: Correlation with the Loss of MinD Homologue Expression. FEMS Microbiology Letters, 124, 157-165.
https://doi.org/10.1111/j.1574-6968.1994.tb07278.x
[56]  Wu, G., Zhang, Y., Wang, B., Li, K., Lou, Y., Zhao, Y. and Liu, F. (2021) Proteomic and Transcriptomic Analyses Provide Novel Insights into the Crucial Roles of Host-Induced Carbohydrate Metabolism Enzymes in Xanthomonas oryzae Pv. oryzae Virulence and Rice-Xoo Interaction. Rice (New York, N.Y.), 14, Article No. 57.
https://doi.org/10.1186/s12284-021-00503-x
[57]  Terbush, A.D., Yoshida, Y. and Oateroung, K.W. (2013) FtsZ in Chloroplast Division: Structure, Function and Evolution. Current Opinion in Cell Biology, 25, 461-470.
https://doi.org/10.1016/j.ceb.2013.04.006
[58]  Nakanishi, H., Suzuki, K., Kabeya, Y. and Miyagishima, S.Y. (2009) Plant-Specific Protein MCD1 Determines the Site of Chloroplast Division in Concert with Bacteria-Derived MinD. Current Biology, 19, 151-156.
https://doi.org/10.1016/j.ceb.2013.04.006
[59]  Maple, J., Vojta, L., Soll, J. and Moller, S.G. (2007) ARC3 Is a Stromal Z-Ring Accessory Protein Essential for Plastid Division. EMBO Reports, 8, 293-299.
https://doi.org/10.1038/sj.embor.7400902
[60]  Callaghan, A.J., Marcaide, M.J., Stead, J.A., Mcdowall, K.J., Scott, W.G. and Luisi, B.F. (2005) Structure of Escherichia coli RNase E Catalytic Domain and Implications for RNA Turnover. Nature, 437, 1187-1191.
https://doi.org/10.1038/nature04084
[61]  Carpousis, A.J. (2007) The RNA Degradosome of Escherichia coli: An MRNA-Degrading Machine Assembled on RNase E. Annual Review of Microbiology, 61, 71-87.
https://doi.org/10.1146/annurev.micro.61.080706.093440
[62]  Montero-Llopis, P., Jackson, A.F., Sliusarenko, O., Surovtsev, I., Heinritz, J., Emonet, T. and Jacoba-Wagner, C. (2010) Spatial Organization of the Flow of Genetic Information in Bacteria. Nature, 466, 77-81.
https://doi.org/10.1038/nature09152
[63]  Taghbalout, A. and Rothfield, L. (2007) RNaseE and the Other Constituents of the RNA Degradosome Are Components of the Bacterial Cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 104, 1667-1672.
https://doi.org/10.1073/pnas.0610491104
[64]  Autret, S. and Errington, J. (2003) A Role for Division-Site-Selection Protein MinD in Regulation of Internucleoid Jumping of Soj (ParA) Protein in Bacillus subtilis. Molecular Microbiology, 47, 159-169.
https://doi.org/10.1046/j.1365-2958.2003.03264.x
[65]  Kloosterman, T.G., Lenarcic, R., Willis, C.R., Roberts, D.M., Hamoen, L.W., Errington, J. and Wu, L.J. (2016) Complex Polar Machinery Required for Proper Chromosome Segregation in Vegetative and Sporulating Cells of Bacillus subtilis. Molecular Microbiology, 101, 333-350.
https://doi.org/10.1111/mmi.13393
[66]  Butland, G., Peregrin-Alvarez, J.M., Li, J., Yang, W., Yang, X., Canadien, V., Starostine, A., Richards, D., Beattie, B., Krogan, N., Davey, M., Parkinson, J., Greenblatt, J. and Emili, A. (2005) Interaction Network Containing Conserved and Essential Protein Complexes in Escherichia coli. Nature, 433, 531-537.
https://doi.org/10.1038/nature03239
[67]  Tan, D., Wu, Q., Chen, J.C. and Chen, G.Q. (2014) Engineering Halomonas TD01 for the Low-Cost Production of Polyhydroxyalkanoates. Metabolic Engineering, 26, 34-47.
https://doi.org/10.1016/j.ymben.2014.09.001
[68]  Ma, Y., Zheng, X., Lin, Y., Zhang, L., Yuan, Y., Wang, H., Winterburn, J., Wu, F., Wu, Q., Ye, J.W. and Chen, G.Q. (2022) Engineering an Oleic Acid-Induced System for Halomonas, E. coli and Pseudomonas. Metabolic Engineering, 72, 325-336.
https://doi.org/10.1016/j.ymben.2022.04.003
[69]  Wu, H., Chen, J. and Chen, G.Q. (2016) Engineering the Growth Pattern and Cell Morphology for Enhanced PHB Production by Escherichia coli. Applied Microbiology and Biotechnology, 100, 9907-9916.
https://doi.org/10.1007/s00253-016-7715-1
[70]  Fu, C., Guan, G. and Wang, H. (2018) The Anticancer Effect of Sanguinarine: A Review. Current Pharmaceutical Design, 24, 2760-2764.
https://doi.org/10.2174/1381612824666180829100601
[71]  Beuria, T.K., Santra, M.K. and Panda, D. (2005) Sanguinarine Blocks Cytokinesis in Bacteria by Inhibiting FtsZ Assembly and Bundling. Biochemistry, 44, 16584-16593.
https://doi.org/10.1021/bi050767+
[72]  Liu, J., Ma, R., Bi, F., Zhang, F., Hu, C., Venter, H., Semple, S.J. and Ma, S. (2018) Novel 5-Methyl-2-Phenylphe- nanthridium Derivatives as FtsZ-Targeting Antibacterial Agents from Structural Simplification of Natural Product Sanguinarine. Bioorganic and Medicinal Chemistry Letters, 28, 1825-1831.
https://doi.org/10.1016/j.bmcl.2018.04.015
[73]  Domadia, P.N., Bhunia, A., Sivaraman, J., Swarup, S. and Dasgupta, D. (2008) Berberine Targets Assembly of Escherichia coli Cell Division Protein FtsZ. Biochemistry, 47, 3225-3234.
https://doi.org/10.1021/bi7018546
[74]  Sun, N., Chan, F.Y., Lu, Y.J., Neves, M.A., Lui, H.K., Wang, Y., Chow, K.Y., Chan, K.F., Yan, S.C., Leung, Y.C., Abagyan, R., Chan, T.H. and Wong, K.Y. (2014) Rational Design of Berberine-Based FtsZ Inhibitors with Broad-Spectrum Antibacterial Activity. PLOS ONE, 9, E97514.
https://doi.org/10.1371/journal.pone.0097514
[75]  Ohashi, Y., Chijiiwa, Y., Suzuki, K., Takahashi, K., Nanamiya, H., Sato, T., Hosoyo, Y., Ochi, K. and Kawamura, F. (1999) The Lethal Effect of A Benzamide Derivative, 3-Methoxybenzamide, Can Be Suppressed by Mutations within a Cell Division Gene, FtsZ, in Bacillus subtilis. Journal of Bacteriology, 181, 1348-1351.
https://doi.org/10.1128/JB.181.4.1348-1351.1999
[76]  Beuria, T.K., Singh, P., Surolia, A. and Panda, D. (2009) Promoting Assembly and Bundling of FtsZ as a Strategy to Inhibit Bacterial Cell Division: A New Approach for Developing Novel Antibacterial Drugs. The Biochemical Journal, 423, 61-69.
https://doi.org/10.1042/BJ20090817
[77]  Hu, S., Wang, X., Sun, W., Wang, L. and Li, W. (2021) In Vitro Study of Biocontrol Potential of Rhizospheric Pseudomonas aeruginosa against Pathogenic Fungi of Saffron (Crocus sativus L.). Pathogens, 10, Article No. 1423.
https://doi.org/10.3390/pathogens10111423
[78]  Chaudhary, R., Kota, S. and Misra, H.S. (2021) DivIVA Regulates Its Expression and the Orientation of New Septum Growth in Deinococcus radiodurans. Journal of Bacteriology, 203, E0016321.
https://doi.org/10.1128/JB.00163-21
[79]  Liu, J., Xing, W.Y., Liu, B. and Zhang, C.C. (2022) Three-Dimensional Coordination of Cell-Division Site Positioning in a Filamentous Cyanobacterium. Proceedings of the National Academy of Sciences of the United States of America Nexus, 2, Pgac307.
https://doi.org/10.1093/pnasnexus/pgac307
[80]  Glock, P., Broichhagen, J., Kretschmer, S., Blumhardt, P., Muchsch, J., Trauner, D. and Schwille, P. (2018) Optical Control of a Biological Reaction-Diffusion System. Angewandte Chemie International Edition, 57, 2362-2366.
https://doi.org/10.1002/anie.201712002
[81]  Shih, Y.L., Huang, L.T., Tu, Y.M., Lee, B.F., Bau, Y.C., Hong, C.Y., Lee, H.L.H., Shih, Y.P., Hsu, M.F., Chen, J.S., Lu, Z.X. and Chao, L. (2019) Active Transport of Membrane Components by Dynamic Min Protein Waves. Biophysical Journal, 116, 1469-1482.
https://doi.org/10.1016/j.bpj.2019.03.011
[82]  Litschel, T., Ramm, B., Maas, R., Heymann, M. and Schwille, P. (2018) Beating Vesicles: Encapsulated Protein Oscillations Cause Dynamic Membrane Deformations. Angewandte Chemie International Edition, 57, 16286-16290.
https://doi.org/10.1002/anie.201808750
[83]  Kohyama, S., Merino-Salomon, A. and Schwille, P. (2022) In Vitro Assembly, Positioning and Contraction of a Division Ring in Minimal Cells. Nature Communications, 13, Article No. 6098.
https://doi.org/10.1038/s41467-022-33679-x
[84]  Farley, M., Hu, B., Margolin, W. and Liu, J. (2016) Minicells, Back in Fashion. Journal of Bacteriology, 198, 1186-1195.
https://doi.org/10.1128/JB.00901-15
[85]  Carleton, H.A., Lara-Tejero, M., Liu, X. and Galan, J.E. (2013) Engineering the Type III Secretion System in Non-Replicating Bacterial Minicells for Antigen Delivery. Nature Communications, 4, Article No. 1590.
https://doi.org/10.1038/ncomms2594
[86]  Ramm, B., Heermann, T. and Schwille, P. (2019) The E. coli MinCDE System in the Regulation of Protein Patterns and Gradients Cellular and Molecular Life Sciences. CMLS, 76, 4245-4273.
https://doi.org/10.1007/s00018-019-03218-x
[87]  Merino-Salomon, A., Babl, L. and Schwille, P. (2021) Self-Organized Protein Patterns: The MinCDE and ParABS Systems. Current Opinion in Cell Biology, 72, 106-115.
https://doi.org/10.1016/j.ceb.2021.07.001

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413