全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

经由Claisen重排的芳烃脱芳构化反应研究
Study of Aromatics Dearomatization by Claisen Rearrangement

DOI: 10.12677/JOCR.2024.121001, PP. 1-16

Keywords: Claisen重排,脱芳构化,异位重排
Claisen Rearrangement
, Dearomatization, Ectopic Rearrangement

Full-Text   Cite this paper   Add to My Lib

Abstract:

Claisen重排作为一类重要的重排反应,反应过程中所经历的脱芳构化步骤具有其独特性。在有机合成中,脱芳构化反应是一种具有实用性的化学反应,芳香基团本身具有化学性质和功能,但有时也会构成一定障碍,在这种情况下,脱芳构化反应可以去除这些芳香基团,从而提高其稳定性并用于制备不同类型的化合物与功能分子。近些年来,随着新反应模式和新催化体系的发展创新,不同体系下的脱芳构化反应被相继报道。本文通过文献查阅,并进一步分析、归纳,对Claisen重排反应下的不同模式的脱芳构化进行了深入的探讨与研究,详细阐述了该类反应的独特机制和反应的发展情况。
As a kind of important rearrangement reaction, the dearomatization process of Claisen rearrangement is unique. In organic synthesis, dearomatization reaction is a practical chemical reaction, the aromatic group itself has chemical properties and functions, but sometimes it will constitute a certain obstacle, in this case, dearomatization reaction can remove these aromatic groups, thereby improving its stability and used to prepare different types of compounds and functional molecules. In recent years, with the development and innovation of new reaction modes and new catalytic systems, dearomatization reactions under different systems have been reported successively. In this paper, through literature review, further analysis and induction, the different modes of dearomatization under Claisen rearrangement reaction are deeply discussed and studied, and the unique mechanism and development of this kind of reaction are elaborated in detail.

References

[1]  Claisen, L. (1912) Uber Umlagerung von Phenol-allyl-athem in C-Allyl-phenole. Berichte der Deutschen Chemischen Gesellschaft, 45, 3157-3166.
https://doi.org/10.1002/cber.19120450348
[2]  Claisen, L. and Tietze, E. (1926) Uber Wanderung des Allyls usw. Liebigs Annalen der Chemie, 449, 81-101.
https://doi.org/10.1002/jlac.19264490106
[3]  Cheng, Q. (2017) Natural-Product-Inspired Dearomatization of Nitrobenzofurans. Chem, 3, 380-382.
https://doi.org/10.1016/j.chempr.2017.08.012
[4]  Zheng, C. and You, S.L. (2021) Advances in Catalytic Asymmetric Dearomatization. ACS Central Science, 7, 432-444.
https://doi.org/10.1021/acscentsci.0c01651
[5]  Narayan, A.R.H., et al. (2019) Positioning-Group-Enabled Biocatalytic Oxidative Dearomatization. ACS Central Science, 6, 1010-1016.
https://doi.org/10.1021/acscentsci.9b00163
[6]  Aleksiev, M. and Manche?o, O.G. (2023) Enantioselective Dearomatization Reactions of Heteroarenes by Anion-Binding Organocatalysis. Chemical Communications, 59, 3360-3372.
https://doi.org/10.1039/D2CC07101K
[7]  Massad, I. and Marek, I. (2021) Alkene Isomerization Revitalizes the Coates-Claisen Rearrangement. Angewandte Chemie International Edition, 60, 18509-18513.
https://doi.org/10.1002/anie.202105834
[8]  Gao, H.J., Miao, Y.H., Sun, W.N., Zhao, R., Xiao, X., Hua, Y.Z., Mei, G.J., et al. (2023) Diversity-Oriented Catalytic Asymmetric DearomatizationofIndoleswitho-Quinone Diimides. Advanced Science, 10, Article ID: 2305101.
https://doi.org/10.1002/advs.202305101
[9]  Wu, W.T., Zhang, L. and You, S.L. (2016) Catalytic Asymmetric Dearomatization (CADA) Reactions of Phenol and Aniline Derivatives. Chemical Society Reviews, 45, 1570-1580.
https://doi.org/10.1039/C5CS00356C
[10]  Hu, N., Jung, H., Zheng, Y., Lee, J., Zhang, L., Ullah, Z., Meggers, E., et al. (2018) Catalytic Asymmetric Dearomatization by Visible-Light-Activated [2+2] Photocycloaddition. AngewandteChemie International Edition, 57, 6242-6246.
https://doi.org/10.1002/anie.201802891
[11]  Xia, Z.L., Xu-Xu, Q.F., Zheng, C. and You, S.L. (2020) Chiral Phosphoric Acid-Catalyzed Asymmetric Dearomatization Reactions. Chemical Society Reviews, 49, 286-300.
https://doi.org/10.1039/C8CS00436F
[12]  McAtee, R.C., Noten, E.A. and Stephenson, C.R. (2020) Arenedearomatization through a Catalytic N-Centered Radical Cascade Reaction. Nature Communications, 11, 2528-2536.
https://doi.org/10.1038/s41467-020-16369-4
[13]  Peng, L., Xu, D., Yang, X., Tang, J., Feng, X., Zhang, S.L. and Yan, H. (2019) Organocatalytic Asymmetric One-Step Desymmetrizing Dearomatization Reaction of Indoles: Development and Bioactivity Evaluation. Angewandte Chemie International Edition, 58, 216-220.
https://doi.org/10.1002/anie.201811437
[14]  Guang, J.M., et al. (2023) Catalytic Asymmetric Dearomatization of Phenols via Divergent Intermolecular (3 + 2) and Alkylation Reactions. Nature Communications, 14, Article No. 5189.
https://doi.org/10.1038/s41467-023-40891-w
[15]  Chen, P.F., Zhou, B., Wu, P., Wang, B. and Ye, L.W. (2021) Br?nsted Acid Catalyzed Dearomatization by Intramolecular Hydroalkoxylation/Claisen Rearrangement: Diastereo- and Enantioselective Synthesis of Spirolactams. Angewandte Chemie International Edition, 60, 27164-27170.
https://doi.org/10.1002/anie.202113464
[16]  Davison, N., Quirk, J.A., Tuna, F., Collison, D., McMullin, C.L., Michaels, H., Lu, E., et al. (2023) A Room-Temperature-Stable Electride and Its Reactivity: Reductive Benzene/Pyridine Couplings and Solvent-Free Birch Reductions. Chem, 9, 576-591.
https://doi.org/10.1016/j.chempr.2022.11.006
[17]  Southgate, E.H., Holycross, D.R. and Sarlah, D. (2017) Total Synthesis of Lycoricidine and Narciclasine by Chemical Dearomatization of Bromobenzene. Angewandte Chemie International Edition, 56, 15049-15052.
https://doi.org/10.1002/anie.201709712
[18]  Ghavre, M., Froese, J., Pour, M. and Hudlicky, T. (2016) Synthesis of Amaryllidaceae Constituents and Unnatural Derivatives. Angewandte Chemie International Edition, 55, 5642-5691.
https://doi.org/10.1002/anie.201508227
[19]  Kornienko, A. and Evidente, A. (2008) Chemistry, Biology, and Medicinal Potential of Narciclasine and Its Congeners. Chemical Reviews, 108, 1982-2014.
https://doi.org/10.1021/cr078198u
[20]  Elango, S. and Yan, T.H. (2002) A Short Synthesis of (+)-Narciclasine via a Strategy Derived from Stereocontrolled Epoxide Formation and SnCl4-Catalyzed Arene-Epoxide Coupling. The Journal of Organic Chemistry, 67, 6954-6959.
https://doi.org/10.1021/jo020155k
[21]  Feng, S., et al. (2014) Organocatalytic Asymmetric Arylative Dearomatization of 2,3-Disubstituted Indoles Enabled by Tandem Reactions. Angewandte Chemie International Edition, 53, 1-5.
https://doi.org/10.1002/anie.201408551
[22]  Kuznetsov, D.M., Mukhina, O.A. and Kutateladze, A.G. (2016) Photoassisted Synthesis of Complex Molecular Architectures: Dearomatization of Benzenoid Arenes with Aza-o-xylylenes via an Unprecedented [2+4] Reaction Topology. Angewandte Chemie International Edition, 55, 6988-6991.
https://doi.org/10.1002/anie.201602288
[23]  Reed, J.H., Donets, P.A., Miaskiewicz, S. and Cramer, N. (2019) A 1,3,2-Diazaphospholene-Catalyzed Reductive Claisen Rearrangement. Angewandte Chemie International Edition, 58, 8893-8897.
https://doi.org/10.1002/anie.201904411
[24]  Maulide, N., et al. (2018) Unusual Mechanisms in Claisen Rearrangements: An Ionic Fragmentation Leading to a Meta-Selective Rearrangement. Chemical Science, 9, 4124-4131.
https://doi.org/10.1039/C7SC04736C
[25]  Mertl, D., et al. (2005) Alkyl Aluminum Halide Promoted Intramolecular Cyclization of w-Allyl-cycloalk-2-enones: Access to Bridged Bi- and Tricyclic Compounds. Angewandte Chemie International Edition, 44, 99-10.
https://doi.org/10.1002/anie.200461207
[26]  Lovchik, M.A., Goeke, A. and Fráter, G. (2006) Stereoselective Synthesis of Cyclohexa-2,4-Dien-1-Ones and Cyclohex-2-en-1-ones from Phenols. Tetrahedron Asymmetry, 17, 1693-1699.
https://doi.org/10.1016/j.tetasy.2006.06.017
[27]  Yadav, G.D. and Lande, S.V. (2005) Claisen Rearrangement with a Novel Solid Superacid UDCaT-5: Atom Economical and Selective Conversion of Allyl-4-Methoxyphenyl Ether into 2-allyl-4-methoxyphenol. Microporous and Mesoporous Materials, 83, 357-364.
https://doi.org/10.1016/j.micromeso.2005.05.002
[28]  Chou, C.-M., et al. (2019) Functionalized Allyl Aryl Ethers Synthesis from Benzoic Acids Using Dearomatization and Decarboxylative Allylation Approach. The Journal of Organic Chemistry, 84, 653-665.
https://doi.org/10.1021/acs.joc.8b02487
[29]  Chen, K., Kang, Q.K., Li, Y., Wu, W.Q., Zhu, H. and Shi, H. (2022) Catalytic Amination of Phenols with Amines. Journal of the American Chemical Society, 144, 1144-1151.
https://doi.org/10.1021/jacs.1c12622
[30]  Malarz, J., Yudina, Y.V. and Stojakowska, A. (2023) Hairy Root Cultures as a Source of Phenolic Antioxidants: Simple Phenolics, Phenolic Acids, Phenylethanoids, and Hydroxycinnamates. International Journal of Molecular Sciences, 24, Article No. 6920.
https://doi.org/10.3390/ijms24086920
[31]  Qiu, Z. and Li, C.J. (2020) Transformations of Less-Activated Phenols and Phenol Derivatives via C-O Cleavage. Chemical Reviews, 120, 10454-10515.
https://doi.org/10.1021/acs.chemrev.0c00088
[32]  Shi, F.Q., Li, X., Xia, Y., Zhang, L. and Yu, Z.X. (2007) DFT Study of the Mechanisms of in Water Au(I)-Catalyzed Tandem [3,3]-Rearrangement/Nazarov Reaction/[1,2]-Hydrogen Shift of Enynyl Acetates: A Proton-Transport CatalysisStrategy in the Water-Catalyzed [1,2]-Hydrogen Shift. Journal of the American Chemical Society, 129, 15503-15512.
https://doi.org/10.1021/ja071070+
[33]  Blackmond, D.G., Armstrong, A., Coombe, V. and Wells, A. (2007) Water in Organocatalytic Processes: Debunking the Myths. Angewandte Chemie International Edition, 46, 3798-3800.
https://doi.org/10.1002/anie.200604952
[34]  Kobayashi, S., et al. (2006) Ag(I)-Catalyzed Michael Additions of b-Ketoesters to Nitroalkenes in Water: Remarkable Effect of Water as a Reaction Medium on Reaction Rates. Synlett, 9, 1410-1412.
https://doi.org/10.1055/s-2006-939709
[35]  Peruzzi, M.T., Lee, S.J. and Gagné, M.R. (2017) Gold(I) Catalyzed Dearomative Claisen Rearrangement of Allyl, Allenyl Methyl, and Propargyl Aryl Ethers. Organic Letters, 19, 6256-6259.
https://doi.org/10.1021/acs.orglett.7b03306
[36]  Obradors, C. and Echavarren, A.M. (2014) Gold-Catalyzed Rearrangements and Beyond. Accounts of Chemical Research, 47, 902-912.
https://doi.org/10.1021/ar400174p
[37]  Sherry, B.D. and Toste, F.D. (2004) Gold(I)-Catalyzed Propargyl Claisen Rearrangement. Journal of the American Chemical Society, 126, 15978-15979.
https://doi.org/10.1021/ja044602k
[38]  Mu?oz, M.P. (2012) Transition Metal-Catalysed Intermolecular Reaction of Allenes with Oxygen Nucleophiles: A Perspective. Organic & Biomolecular Chemistry, 10, 3584-3594.
https://doi.org/10.1039/c2ob07128b
[39]  Widenhoefer, R.A., et al. (2009) Gold(I)-Catalyzed Hydration of Allenes. Tetrahedron, 65, 1794-1798.
https://doi.org/10.1016/j.tet.2008.10.113
[40]  Wei, X., Liang, X., Li, Y., Liu, Q., Liu, X., Zhou, Y. and Liu, H. (2021) I2-Induced Cascade Cyclization and Dearomatization of Indoles for the Highly Efficient Synthesis of Iodinated and Vinylic Spiroindolenines. Green Chemistry, 23, 9165-9171.
https://doi.org/10.1039/D1GC02713A
[41]  Camp, J.E., Craig, D., Funai, K. and White, A.J. (2011) Decarboxylative Claisen Rearrangement Reactions: Synthesis and Reactivity of Alkylidene-Substituted Indolines. Organic & Biomolecular Chemistry, 9, 7904-7912.
https://doi.org/10.1039/c1ob06212c
[42]  Buechi, G. and Vogel, D.E. (1983) Preparation and Rearrangement of Trans-3-(allyloxy)acrylic Acids: A Claisen Sequence that Avoids Mercury Catalysis. The Journal of Organic Chemistry, 48, 5406-5408.
https://doi.org/10.1021/jo00174a064
[43]  Ogura, A., et al. (2023) Synthesis of Indoles via Sigmatropic Rearrangements and Olefin Isomerization. Advanced Synthesis & Catalysis, 365, 1-9.
[44]  Abe, T., Kosaka, Y., Asano, M., Harasawa, N., Mishina, A., Nagasue, M., Yamada, K., et al. (2019) Direct C4-Benzylation of Indoles via Tandem Benzyl Claisen/Cope Rearrangements. Organic Letters, 21, 826-829.
https://doi.org/10.1021/acs.orglett.8b04120
[45]  Li, H., Hughes, R.P. and Wu, J. (2014) Dearomative Indole (3 + 2) Cycloaddition Reactions. Journal of the American Chemical Society, 136, 6288-6296.
https://doi.org/10.1021/ja412435b
[46]  Linton, E.C. and Kozlowski, M.C. (2008) Catalytic Enantioselective Meerwein-Eschenmoser Claisen Rearrangement: Asymmetric Synthesis of Allyl Oxindoles. Journal of the American Chemical Society, 130, 16162-16163.
https://doi.org/10.1021/ja807026z
[47]  Booker-Milburn, K.I., Fedouloff, M., Paknoham, S.J., Strachan, J.B., Melville, J.L. and Voyle, M. (2000) A New Claisen Sequence for the Synthesis of 3-Substituted-2-oxindoles. Tetrahedron Letters, 41, 4657-4661.
https://doi.org/10.1016/S0040-4039(00)00649-3
[48]  Watson, M.P., Overman, L.E. and Bergman, R.G. (2007) Kinetic and Computational Analysis of the Palladium(II)-Catalyzed Asymmetric Allylic Trichloroacetimidate Rearrangement: Development of a Model for Enantioselectivity. Journal of the American Chemical Society, 129, 5031-5044.
https://doi.org/10.1021/ja0676962
[49]  Cao, T., Linton, E.C., Deitch, J., Berritt, S. and Kozlowski, M.C. (2012) Copper(II)- and Palladium(II)-Catalyzed Enantioselective ClaisenRearrangement of Allyloxy- and Propargyloxy-Indoles to Quaternary Oxindoles and Spirocyclic Lactones. The Journal of Organic Chemistry, 77, 11034-11055.
https://doi.org/10.1021/jo302039n
[50]  Ogasawara, M., Ikeda, H., Nagano, T. and Hayashi, T. (2001) Palladium-Catalyzed Asymmetric Synthesis of Axially Chiral Allenes: A Synergistic Effect of Dibenzalacetone on High Enantioselectivity. Journal of the American Chemical Society, 123, 2089-2090.
https://doi.org/10.1021/ja005921o
[51]  Baidilov, D., Elkin, P.K., Athe, S. and Rawal, V.H. (2023) Rapid Access to 2,2-Disubstituted Indolines via DearomativeIndolic Claisen Rearrangement: Concise, Enantioselective Total Synthesis of (+)-Hinckdentine A. Journal of the American Chemical Society, 145, 14831-14838.
https://doi.org/10.1021/jacs.3c03611
[52]  Zhou, W., Zhou, T., Tian, M., Jiang, Y., Yang, J., Lei, S., Zhang, M., et al. (2021) Asymmetric Total Syntheses of Schizozygane Alkaloids. Journal of the American Chemical Society, 143, 19975-19982.
https://doi.org/10.1021/jacs.1c10279
[53]  Cao, T., Deitch, J., Linton, E.C. and Kozlowski, M.C. (2012) Asymmetric Synthesis of Allenyl Oxindoles and Spirooxindoles by a Catalytic Enantioselective Saucy-Marbet Claisen Rearrangement. Angewandte Chemie International Edition, 51, 2448-2451.
https://doi.org/10.1002/anie.201107417
[54]  Ikonnikova, V.A., Zhigileva, E.A., Al Mufti, A.M., Solyev, P.N., Baranov, M.S. and Mikhaylov, A.A. (2023) Merging Johnson-Claisen and Aromatic Claisen [3,3]-Sigmatropic Rearrangements: Ytterbium Triflate/2,6-Di-tert-butylpyridine Catalytic System. The Journal of Organic Chemistry, 88, 9737-9749.
https://doi.org/10.1021/acs.joc.3c00368
[55]  Raucher, S., Macdonald, J.E. and Lawrence, R.F. (1981) Indole Alkaloidsynthesis via Claisenrearrangement. Total Synthesis of Secodine. Journal of the American Chemical Society, 103, 2419-2421.
https://doi.org/10.1021/ja00399a053
[56]  Raucher, S. and Klein, P. (1986) Synthesis via Sigmatropic Rearrangements. 10. Synthesis of 2,3-Disubstituted Indoles via Claisen Ortho Ester Rearrangement. An Approach for the Synthesis of Vindorosine. The Journal of Organic Chemistry, 51, 123-130.
https://doi.org/10.1021/jo00352a001

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133