全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

香豆素类化合物合成研究进展
Research Progress in synthesis of Coumarins

DOI: 10.12677/JOCR.2024.121002, PP. 17-30

Keywords: 香豆素,抗肿瘤,合成方法
Coumarin
, Antitumor, Synthetic Methods

Full-Text   Cite this paper   Add to My Lib

Abstract:

香豆素是一种以特定的苯并吡喃酮为母核的化合物。自1820年香豆素自唐卡豆中分离出来后,不同的香豆素及其衍生物被研究证实为具有抗凝血、抗肿瘤、抗病毒、抗炎、抗氧化、抗微生物和酶抑制等作用。本文综述了香豆素母核结构的几种经典合成方法,总结了香豆素及其衍生物的合成研究进展,并对香豆素未来的发展进行了展望。
Coumarin is a compound with a specific benzopyrone as its parent nucleus. Since the isolation of coumarin from Tonka bean in 1820, different coumarins and their derivatives have been investigated and confirmed to possess anticoagulant, antitumor, antiviral, anti-inflammatory, antioxidant, anti-microbial, and enzyme inhibitory effects. In this review, we summarize several classical synthesis methods of the nuclear structure, summarize the synthesis of coumarins and its derivatives, and discuss the future development of coumarins.

References

[1]  Murray, R.D.H. (1995) Coumarins. Natural Product Reports, 12, 477-505.
https://doi.org/10.1039/np9951200477
[2]  Hoult, J. and Paya, M. (1996) Pharmacological and Biochemical Actions of Simple Coumarins: Natural Products with Therapeutic Potential. General Pharmacology: The Vascular System, 27, 713-722.
https://doi.org/10.1016/0306-3623(95)02112-4
[3]  Murray, R., Mendez, J. and Brown, S. (1989) Phenolic Constituents of Licorice. II. : Structures of Licopyranocoumarin, Licoarylcoumarin and Glisoflavone, and Inhibitory Effects of Licorice Phenolics on Xanthine Oxidase. Chemical and Pharmaceutical Bulletin, 37, 3005-3009.
https://doi.org/10.1248/cpb.37.3005
[4]  Gleye, C., Lewin, G., Laurens, A., Jullian, J.C., Loiseau, P., Bories, C. and Hocquemiller, R. (2003) Acaricidal Activity of Tonka Bean Extracts. Synthesis and Structure—Activity Relationships of Bioactive Derivatives. Journal of Natural Products, 66, 690-692.
https://doi.org/10.1021/np020563j
[5]  Ji, Q.G., Ge, Z.Q., Ge, Z.X., Chen, K.Z., Wu, H.L., Liu, X.F., Huang, Y.R., Yuan, L.J., Yang, X.L. and Liao, F. (2016) Synthesis and Biological Evaluation of Novel Phosphoramidate Derivatives of Coumarin as Chitin Synthase Inhibitors and Antifungal Agents. European Journal of Medicinal Chemistry, 108, 166-176.
https://doi.org/10.1016/j.ejmech.2015.11.027
[6]  Yule, I.A., Czaplewski, L.G., Pommier, S., Davies, D.T., Narramore, S.K. and Fishwic, C.W.G. (2014) Pyridine-3-Carboxamide-6-Yl-Ureas as Novel Inhibitors of Bacterial DNA Gyrase: Structure Based Design, Synthesis, SAR and Antimicrobial Activity. European Journal of Medicinal Chemistry, 86, 31-38.
https://doi.org/10.1016/j.ejmech.2014.08.025
[7]  Lakum, H.P., Shah, D.R. and Chikhalia, K.H. (2015) The Novel Derivatives of 3-(Iminomethyl)-2H-Chromen-2-One with Thiourea and Piperazine Structural Motive: Rationale, Synthesis, Antimicrobial and Anti-TB Evaluation. Letters in Drug Design & Discovery, 12, 324-341.
https://doi.org/10.2174/1570180811666141009234835
[8]  Perkin, WH. (1868) XXIII.—On the Hydride of Aceto-Salicyl. Journal of Chemical Society, 21, 181-186.
https://doi.org/10.1039/JS8682100181
[9]  Augustine, J.K., Bombrun, A., Ramappa, B. and Boodappa, C. (2012) An Efficient One-Pot Synthesis of Coumarins Mediated by Propylphosphonic Anhydride (T3P) via the Perkin Condensation. Tetrahedron Letters, 53, 4422-4425.
https://doi.org/10.1016/j.tetlet.2012.06.037
[10]  Bharathi, M.V., Chhabra, M. and Paira, P. (2015) Development of Surface Immobilized 3-Azidocoumarin-Based Fluorogenic Probe via Strain Promoted Click Chemistry. Bioorganic & Medicinal Chemistry Letters, 25, 5737-5742.
https://doi.org/10.1016/j.bmcl.2015.10.078
[11]  Bouhaoui, A., Eddahmi, M., Dib, M., et al. (2021) Synthesis and Biological Properties of Coumarin Derivatives. A Review. Chemistry Select, 6, 5848-5870.
[12]  肖迪, 郑旺, 魏晓玉, 等. 氯化胆碱催化合成香豆素-3-羧酸[J]. 应用化学, 2017, 34(11): 1295-1299.
[13]  Song, A., Wang, X. and Lam, K.S. (2003) A Convenient Synthesis of Coumarin-3-Carboxylic Acids via Knoevenagel Condensation of Meldrum’s Acid with Ortho-Hydroxyaryl Aldehydesor Ketones. ChemInform, 34, 1755-1758.
https://doi.org/10.1002/chin.200321126
[14]  Khan, D., Mukhtar, S., Alsharif, M.A., et al. (2017) PhI(OAc)2 Mediated an Efficient Knoevenagel Reaction and Their Synthetic Application for Coumarin Derivatives. Tetrahedron Letters, 58, 3183-3187.
https://doi.org/10.1016/j.tetlet.2017.07.018
[15]  Shakil, M.R., Meguerdichian, A.G., Tasnim, H., et al. (2019) Syntheses of ZnO with Different Morphologies: Catalytic Activity toward Coumarin Synthesis via the Knoevenagel Condensation Reaction. Inorganic Chemistry, 58, 5703-5714.
https://doi.org/10.1021/acs.inorgchem.9b00053
[16]  Morris, J.C., McMurtrie, J.C., Bottle, S.E. and Fairfull-Smith, K.E. (2011) Generation of Profluorescent Isoindoline Nitroxides Usingclick Chemistry. The Journal of Organic Chemistry, 76, 4964-4972.
https://doi.org/10.1021/jo200613r
[17]  周元清. 新型香豆素类化合物的合成与性质研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2017.
[18]  Sun, M., Hu, J., Song, X., et al. (2013) Coumarin Derivatives Protect against Ischemic Brain Injury in Rats. European Journal of Medicinal Chemistry, 67, 39-53.
https://doi.org/10.1353/plo.2013.0017
[19]  Bandgar, B.P., Uppalla, L.S. and Kurule, D.S. (1999) Solvent-Free One-Pot Rapid Synthesis of 3-Carboxycoumarins. Using Focused Microwaves. Green Chemistry, 1, 243-245.
https://doi.org/10.1039/a905811g
[20]  Zhang, Y., Zhu, A., Li, Q., et al. (2015) Cholinium Ionic Liquids as Cheap and Reusable Catalysts for the Synthesis of Coumarins via Pechmann Reaction under Solvent-Free Conditions. RSC Advances, 46, 22946-22950
[21]  Samadizadeh, M., Nouri, S. and Moghadam, F.K. (2016) Magnetic Nanoparticles Functionalized Ethane Sulfonic Acid (MNESA): As an Efficient Catalyst in the Synthesis of Coumarin Derivatives Using Pechmann Condensation under Mild Condition. Research on Chemical Intermediates, 42, 6089-6103.
https://doi.org/10.1007/s11164-016-2447-5
[22]  Takeuchi, Y., Ueda, N., Uesugi, K., et al. (2003) Convenient Synthesis of a Simple Coumarin from Salicylaldehyde and Wittig Reagent. IV1a-c: Improved Synthetic Method of Substituted Coumarins. Heterocycles, 59, 217-224.
https://doi.org/10.3987/COM-02-S23
[23]  Gagey, N., NeVeu, P. and Jullien, L. (2007) Two-Photon Uncaging with the Effcient3, 5-Dibromo-2, 4-Dihydroxy- cinnamiccaging Group. Angewandte Chemie International Edition, 46, 2467-2469.
https://doi.org/10.1002/anie.200604598
[24]  Ishii, H., Kaneko, Y., MiyaZaki, H. and Harayma, T. (1991) A Convenient Synthesis of a Simple Coumarin. Chemical and Pharmaceutical Bulletin, 39, 3100-3102.
https://doi.org/10.1248/cpb.39.3100
[25]  Chandra, A., Jana, K. and Moorthy, J.N. (2020) One-Pot Synthesis of 4-Carboalkoxy-Substituted Benzo[h]Coumarins from α- and β-Naphthols and Their Excited-State Properties. ACS Omega, 5, 207-218.
https://doi.org/10.1021/acsomega.9b02489
[26]  Trost, B.M., Toste, F.D. and Greenman, K. (2003) Atom Economy. Palladium-Catalyzed Formation of Coumarins by Addition of Phenols and Alkynoates via a Net CH Insertion. Journal of the American Chemical Society, 125, 4518-4526.
https://doi.org/10.1021/ja0286573
[27]  Kitamura, T. and Otsubo, K. (2012) Palladium-Catalyzed Intramolecular Hydroarylation of 4-Benzofuranyl Alkynoates. Approach to Angelicin Derivatives. The Journal of Organic Chemistry, 77, 2978-2982.
https://doi.org/10.1021/jo300021a
[28]  Huang, Y., Bao, T. and Wang, H. (2013) Synthesis of 7-Hydroxy-4-Methyl Coumarin with Microwave Radiation Catalyzed by Zirconium Sulfate Tetrahydrate. Advanced Materials Research, 671, 2692-2696.
https://doi.org/10.4028/www.scientific.net/AMR.671-674.2692
[29]  Li, J., Chen, H., Zhang-Negrerie, D., et al. (2013) Synthesis of Coumarins via PIDA/I 2-Mediated Oxidative Cyclization of Substituted Phenylacrylic Acids. RSC Advances, 3, 4311-4320.
https://doi.org/10.1039/c3ra23188g
[30]  Higashida, S., Harada, A., Kawakatsu, R., et al. (2006) Synthesis of a Coumarin Compound from Phenanthrene by a TiO2-Photocatalyzed Reaction. Chemical Communications, No. 26, 2804-2806.
https://doi.org/10.1039/b604332a
[31]  Augustine, A.K., Bombrun, A., Ramappa, B. and Boodappa, C. (2012) An Efficient One-Pot Synthesis of Coumarins Mediated by Propylphosphonic Anhydride (T3P) via the Perkin Condensation. Tetrahedron Letters, 53, 4422-4425.
https://doi.org/10.1016/j.tetlet.2012.06.037
[32]  He, X., Yan, Z., Zuo, Y., Jiang, C., Jin, L. and Shang, Y. (2014) FeCl3-Catalyzed Cascade Reaction: An Efficient Approach to Functionalized Coumarin Derivatives. Synthetic Communications, 44, 1507-1514.
https://doi.org/10.1080/00397911.2013.862833
[33]  Phakhodee, W., Duangkamol, C., Yamano, D. and Pattarawarapan, M. (2017) Ph3P/I2-Mediated Synthesis of 3-Aryl- Substituted and 3, 4-Disubstituted Coumarins. Synlett, 28, 825-830.
https://doi.org/10.1055/s-0036-1588941
[34]  Elgogary, S.R., Hashem, N.M. and Khodeir, M.N. (2015) Synthesis and Photooxygenation of Linear and Angular Furocoumarin Derivatives as a Hydroxyl Radical Source: Psoralen, Pseudopsoralen, Isopseudopsoralen, and Allopsoralen. Journal of Heterocyclic Chemistry, 52, 506-512.
https://doi.org/10.1002/jhet.2084
[35]  Sun, Z., Zhang, X., Wang, S., et al. (2015) Hydrolysis and Alcoholysis of Polysaccharides with High Efficiency Catalyzed by a (C16TA)xH6-xP2W18O62 Nanoassembly. RSC Advances, 5, 94155-94163.
https://doi.org/10.1039/C5RA15047G
[36]  Fiorito, S., Genovese, S., Taddeo, V.A. and Epifano, F. (2015) Microwave-Assisted Synthesis of Coumarin-3-Carbox- ylic Acids under Ytterbium Triflate Catalysis. Tetrahedron Letters, 56, 2434-2436.
https://doi.org/10.1016/j.tetlet.2015.03.079
[37]  Fiorito, S., Taddeo, V.A., Genovese, S. and Epifano, F. (2016) A Green Chemical Synthesis of Coumarin-3-Carboxylic and Cinnamic Acids Using Crop-Derived Products and Waste Waters as Solvents. Tetrahedron Letters, 57, 4795-4798.
https://doi.org/10.1016/j.tetlet.2016.09.023
[38]  Yan, K., Yang, D., Wei, W., Wang, F., Shuai, Y., Li, Q. and Wang, H. (2015) Silver-Mediated Radical Cyclization of Alkynoates and α-Keto Acids Leading to Coumarins via Cascade Double C-C Bond Formation. The Journal of Organic Chemistry, 80, 1550-1556.
https://doi.org/10.1021/jo502474z
[39]  Liu, T., Ding, Q., Zong, Q. and Qiu, G. (2015) Radical 5-exo Cyclization of Alkynoates with 2-Oxoacetic Acids for Synthesis of 3-Acylcoumarins. Organic Chemistry Frontiers, 2, 670-673.
https://doi.org/10.1039/C5QO00029G
[40]  Pakdel, S., Akhlaghinia, B. and Mohammadinezhad, A. (2019) Fe3O4@Boehmite-NH2-CoII NPs: An Environment Friendly Nanocatalyst for Solvent Free Synthesis of Coumarin Derivatives through Pechmann Condensation Reaction. Chemistry Africa, 2, 367-376.
https://doi.org/10.1007/s42250-019-00042-5
[41]  Zeynizadeh, B. and Gilanizadeh, M. (2019) Synthesis and Characterization of a Magnetic Graphene Oxide/Zn-Ni-Fe Layered Double Hydroxide Nanocomposite: An Efficient Mesoporous Catalyst for the Green Preparation of Biscoumarins. New Journal of Chemistry, 43, 18794-18804.
https://doi.org/10.1039/C9NJ04718B
[42]  Sahu, P.K., Sahu, P.K. and Agarwal, D.D. (2014) Role of Basicity, Calcinations, Catalytic Activity and Recyclability of Hydrotalcite in Eco-Friendly Synthesis of Coumarin Derivatives. Journal of Molecular Catalysis A: Chemical, 395, 251-260.
https://doi.org/10.1016/j.molcata.2014.07.024
[43]  Geetha, S., Thangamani, A., Valliappan, R., Vedanayaki, S. and Ganapathi, A. (2020) TiO2-SO42?: A Recyclable Heterogeneous Catalyst for the Microwave-Mediated Synthesis of Benzylamino Coumarin Derivatives in Water. Chemical Data Collections, 30, Article ID: 100589.
https://doi.org/10.1016/j.cdc.2020.100589
[44]  Sun, H., Zhang, Y., Guo, F., Yan, Y., Wan, C. and Zha, Z. (2012) One-Pot Synthesis of 3, 4-Disubstituted Coumarins under Catalysis of Mn3O4 Nanoparticles. European Journal of Organic Chemistry, 2012, 480-483.
https://doi.org/10.1002/ejoc.201101578

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413