全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低氧胁迫下鱼类的适应性策略
Adaptation Strategies of Fish under Hypoxic Stress

DOI: 10.12677/OJFR.2024.111003, PP. 19-29

Keywords: 鱼类,溶解氧,低氧胁迫,适应性,行为
Fish
, Dissolved Oxygen, Hypoxic Stress, Adaptability, Behavior

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,水产养殖行业快速发展,鱼类因为具有较高的营养价值而受到青睐。而养殖过程中水体缺氧难题亟待解决。溶解氧是影响鱼类存活的关键环境因素。因此通过研究低氧胁迫下鱼类的机体响应特征和适应性策略来提高经济效益显得尤为重要,本文从生理结构和代谢变化,行为变化,分子机制的微观和宏观变化等方面综述了鱼类对低氧的适应性策略和特征,发现了鱼类低氧时通过激活分解代谢途径产生更多能量,减少生物合成以减少能量消耗。改变生理构造,摄食行为,种群间距,基因表达量,调节自身激素释放以及相应的表观遗传变化来适应低氧环境。此文为低氧条件下养殖鱼类研究作出补充,并为其他水生物种缺氧研究提供思路。
In recent years, the aquaculture industry has developed rapidly, and fish are favored because of their high nutritional value. The problem of hypoxia in the water body in the process of breeding needs to be solved urgently. Dissolved oxygen is a key environmental factor affecting fish survival. Therefore, it is particularly important to improve the economic benefits by studying the response characteristics and adaptive strategies of fish under hypoxic stress, and this paper reviews the adaptive strategies and characteristics of fish to hypoxia from the aspects of physiological structure and metabolic changes, behavioral changes, and microscopic and macroscopic changes of molecular mechanisms, and finds that fish produce more energy by activating catabolic pathways when they are hypoxic, and reduce biosynthesis to reduce energy consumption. Physiological structure, feeding behavior, population spacing, gene expression amount, regulation of autohormone release and corresponding epigenetic changes to adapt to the hypoxic environment. This paper supplements the study of cultured fish under hypoxic conditions and provides ideas for the study of hypoxia in other aquatic species.

References

[1]  周剑, 李强, 周波, 等. 夏季持续高温天气特色淡水鱼养殖应对策略[J]. 四川农业科技, 2023(2): 66-69.
[2]  关长涛, 王琳, 徐永江. 我国海水鱼类养殖产业现状与未来绿色高质量发展思考(上) [J]. 科学养鱼, 2020(7): 1-3.
[3]  Schmidtko, S., Stramma, L. and Visbeck, M. (2017) Decline in Global Oceanic Oxygen Content during the Past Five Decades. Nature, 542, 335-339.
https://doi.org/10.1038/nature21399
[4]  Jassby, A.D., et al. (2002) “Book-Review” Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Limnology and Oceanography, 47, 1269.
[5]  Thomas, Y., Flye-Sainte-Marie, J., Chabot, D., et al. (2018) Effects of Hypoxia on Metabolic Functions in Marine Organisms: Observed Patterns and Modelling Assumptions within the Context of Dynamic Energy Budget (DEB) Theory. Journal of Sea Research, 143, 231-242.
https://doi.org/10.1016/j.seares.2018.05.001
[6]  Liu, X.Q., Li, N., Feng, C.X., et al. (2019) Lethal Effect of Total Dissolved Gas-Supersaturated Water with Suspended Sediment on River Sturgeon (Acipenser dabryanus). Scientific Reports, 9, Article No. 13373.
https://doi.org/10.1038/s41598-019-49800-y
[7]  Abdel-Tawwab, M., Monier, M.N., et al. (2019) Fish Response to Hypoxia Stress: Growth, Physiological, and Immunological Biomarkers. Fish Physiology and Biochemistry, 45, 997-1013.
https://doi.org/10.1007/s10695-019-00614-9
[8]  Vaquer-Sunyer, R. and Duarte, C.M. (2008) Thresholds of Hypoxia for Marine Biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 105, 15452-15457.
https://doi.org/10.1073/pnas.0803833105
[9]  Rosenberg, R., Hellman, B. and Johansson, B. (1991) Hypoxic Tolerance of Marine Benthic Fauna. Marine Ecology Progress Series, 79, 127-131.
https://doi.org/10.3354/meps079127
[10]  Xiao, W.H. (2015) The Hypoxia Signaling Pathway and Hypoxic Adaptation in Fishes. Science China (Life Sciences), 58, 148-155.
https://doi.org/10.1007/s11427-015-4801-z
[11]  赵永丽. 花斑裸鲤低氧胁迫转录组学及其主要差异基因表达调控研究[D]: [硕士学位论文]. 西宁: 青海大学, 2018.
[12]  王维政, 曾泽乾, 黄建盛, 等. 低氧胁迫对军曹鱼幼鱼抗氧化、免疫能力及能量代谢的影响[J]. 广东海洋大学学报, 2020, 40(5): 12-18.
[13]  Chen, F.J., Ling, X.D., et al. (2022) Hypoxia-Induced Oxidative Stress and Apoptosis in Gills of Scaleless Carp (Gymnocypris przewalskii). Fish Physiology and Biochemistry, 48, 911-924.
https://doi.org/10.1007/s10695-022-01091-3
[14]  Wu, R.S.S. (2002) Hypoxia: From Molecular Responses to Ecosystem Responses. Marine Pollution Bulletin, 45, 35-45.
https://doi.org/10.1016/S0025-326X(02)00061-9
[15]  Shang, F.Q., Lu, Y., et al. (2022) Transcriptome Analysis Identifies Key Metabolic Changes in the Brain of Takifugu rubripes in Response to Chronic Hypoxia. Genes, 13, Article No. 1347.
https://doi.org/10.3390/genes13081347
[16]  da Cruz, A.L., da Silva, H.R., et al. (2013) Air-Breathing Behavior and Physiological Responses to Hypoxia and Air Exposure in the Air-Breathing Loricariid Fish, Pterygoplichthys Anisitsi. Fish Physiology and Biochemistry, 39, 243-256.
https://doi.org/10.1007/s10695-012-9695-0
[17]  Kramer, D.L. (1987) Dissolved Oxygen and Fish Behavior. Environmental Biology of Fishes, 18, 81-92.
https://doi.org/10.1007/BF00002597
[18]  赵文文, 曹振东, 付世建. 溶氧水平对鳊鱼、中华倒刺鲃幼鱼游泳能力的影响[J]. 水生生物学报, 2013, 37(2): 314-320.
[19]  Lefran?ois, C., Shingles, A. and Domenici, P. (2005) The Effect of Hypoxia on Locomotor Performance and Behaviour during Escape in Liza aurata. Journal of Fish Biology, 67, 1711-1729.
https://doi.org/10.1111/j.1095-8649.2005.00884.x
[20]  Sánchez-García, M.A., Zottoli, S.J. and Roberson, L.M. (2019) Hypoxia Has a Lasting Effect on Fast-Startle Behavior of the Tropical Fish Haemulon plumieri. The Biological Bulletin, 237, 48-62.
https://doi.org/10.1086/704337
[21]  Bowyer, J.N., Booth, M.A., Qin, J.G., et al. (2014) Temperature and Dissolved Oxygen Influence Growth and Digestive Enzyme Activities of Yellowtail Kingfish Seriola lalandi (Valenciennes, 1833). Aquaculture Research, 45, 2010-2020.
https://doi.org/10.1111/are.12146
[22]  Magnoni, L.J., Eding, E., Leguen, I., et al. (2018) Hypoxia, but Not an Electrolyte-Imbalanced Diet, Reduces Feed Intake, Growth and Oxygen Consumption in Rainbow Trout (Oncorhynchus mykiss). Scientific Reports, 8, Article No. 4965.
https://doi.org/10.1038/s41598-018-23352-z
[23]  Lv, H.-B., Ma, Y.-Y., Hu, C.-T., et al. (2020) The Individual and Combined Effects of Hypoxia and High-Fat Diet Feeding on Nutrient Composition and Flesh Quality in Nile Tilapia (Oreochromis niloticus). Food Chemistry, 343, Article ID: 128479.
[24]  Remen, M., Oppedal, F., Torgersen, T., et al. (2011) Effects of Cyclic Environmental Hypoxia on Physiology and Feed Intake of Post-Smolt Atlantic Salmon: Initial Responses and Acclimation. Aquaculture, 326-329, 148-155.
https://doi.org/10.1016/j.aquaculture.2011.11.036
[25]  Domenici, P., Ferrari, R.S., Steffensen, J.F. and Batty, R.S. (2002) The Effect of Progressive Hypoxia on School Structure and Dynamics in Atlantic Herring Clupea harengus. Proceedings Biological Sciences, 269, 2103-2111.
https://doi.org/10.1098/rspb.2002.2107
[26]  Erickstad, M., Hale, L.A., Chalasani, S.H. and Groisman, A. (2015) A Microfluidic System for Studying the Behavior of Zebrafish Larvae under Acute Hypoxia. Lab on a Chip, 15, 857-866.
https://doi.org/10.1039/C4LC00717D
[27]  Martin, K.L.M. (1995) Time and Tide Wait for No Fish: Intertidal Fishes out of Water. Environmental Biology of Fishes, 44, 165-181.
https://doi.org/10.1007/BF00005914
[28]  Genz, J., Jyde, M.B., Svendsen, J.C., et al. (2013) Excess Post-Hypoxic Oxygen Consumption Is Independent from Lactate Accumulation in Two Cyprinid Fishes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165, 54-60.
https://doi.org/10.1016/j.cbpa.2013.02.002
[29]  陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹鳃器官的影响[J]. 南方水产科学, 2017, 13(1): 124-130.
[30]  林欣, 区又君, 温久福, 等. 急性低氧胁迫对四指马鲅幼鱼鳃和肝组织损伤的影响[J]. 渔业研究, 2023, 45(1): 14-22.
[31]  陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹幼鱼肝组织损伤和抗氧化的影响[J]. 动物学杂志, 2016, 51(6): 1049-1058.
[32]  Lize, S., Baosuo, L., Bo, L., et al. (2021) Transcriptome Analysis of Gills Provides Insights into Translation Changes under Hypoxic Stress and Reoxygenation in Golden Pompano, Trachinotus ovatus (Linnaeus 1758). Frontiers in Marine Science, 8, Article ID: 763622.
[33]  Lushchak, V.I. and Bagnyukova, T.V. (2006) Effects of Different Environmental Oxygen Levels on Free Radical Processes in Fish. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 144, 283-289.
https://doi.org/10.1016/j.cbpb.2006.02.014
[34]  Taglialatela, R. and Della Corte, F. (1997) Human and Recombinant Erythropoietin Stimulate Erythropoiesis in the Goldfish Carassius auratus. European Journal of Histochemistry: EJH, 41, 301-304.
[35]  Wu, R.S.S., Zhou, B.S., Randall, D.J., et al. (2003) Aquatic Hypoxia Is an Endocrine Disruptor and Impairs Fish Reproduction. Environmental Science & Technology: ES&T, 37, 1137-1141.
https://doi.org/10.1021/es0258327
[36]  杨二军, 杨林桐, 王维政, 等. 军曹鱼响应低氧胁迫转录组SNP位点鉴定及其功能注释分析[J]. 海洋学报, 2022, 44(1): 113-124.
[37]  Soitamo, A.J., Rabergh, C.M., Gassmann, M., et al. (2001) Characterization of a Hypoxia-Inducible Factor (HIF-1alpha) from Rainbow Trout. Accumulation of Protein Occurs at Normal Venous Oxygen Tension. Journal of Biological Chemistry, 276, 19699-19705.
https://doi.org/10.1074/jbc.M009057200
[38]  David, G., Justin, J., Bernd, P., et al. (2015) Genome-Wide Mapping of Hif-1α Binding Sites in Zebrafish. BMC Genomics, 16, Article No. 923.
https://doi.org/10.1186/s12864-015-2169-x
[39]  Xu, J., Yu, X., Ye, H., Gao, S., et al. (2022) Comparative Metabolomics and Proteomics Reveal Vibrio parahaemolyticus Targets Hypoxia-Related Signaling Pathways of Takifugu obscurus. Frontiers in Immunology, 12, Article ID: 825358.
https://doi.org/10.3389/fimmu.2021.825358
[40]  Richard, Y., Eric, C., Richard, K., et al. (2006) Hypoxia Induces Telomerase Reverse Transcriptase (TERT) Gene Expression in Non-Tumor Fish Tissues in Vivo: The Marine Medaka (Oryzias melastigma) Model. BMC Molecular Biology, 7, Article No. 27.
https://doi.org/10.1186/1471-2199-7-27
[41]  Lin, Y., Miao, L.-H., Liu, B., et al. (2021) Molecular Cloning and Functional Characterization of the Hypoxia-Inducible Factor-1α in Bighead Carp (Aristichthys nobilis). Fish Physiology and Biochemistry, 47, 351-364.
https://doi.org/10.1007/s10695-020-00917-2
[42]  Sollid, J., Rissanen, E., et al. (2006) HIF-1alpha and iNOS Levels in Crucian Carp Gills during Hypoxia-Induced Transformation. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology, 176, 359-369.
https://doi.org/10.1007/s00360-005-0059-2
[43]  Ng, P.K.S., Yu, R.M.K., Kwong, T.F.N., et al. (2010) Transcriptional Regulation and Functional Implication of the Grass Carp CITED1 (GcCITED1) in the Negative Regulation of HIF-1. International Journal of Biochemistry and Cell Biology, 42, 1544-1552.
https://doi.org/10.1016/j.biocel.2010.06.007
[44]  李欣茹. 低氧胁迫对暗纹东方鲀能量代谢、血液指标及基因表达的影响[D]: [硕士学位论文]. 南京: 南京师范大学, 2018.
[45]  Sun, B., Gao, J., Yang, L.J., et al. (2022) Depletion of LOXL2 Improves Respiratory Capacity: From Air-Breathing Fish to Mammal under Hypoxia. International Journal of Biological Macromolecules, 209, 563-575.
https://doi.org/10.1016/j.ijbiomac.2022.04.040
[46]  Vuori, K.A.M., Soitamo, A., Vuorinen, P.J., et al. (2004) Baltic Salmon (Salmo salar) Yolk-Sac Fry Mortality Is Associated with Disturbances in the Function of Hypoxia-Inducible Transcription Factor (HIF-1α) and Consecutive Gene Expression. Aquatic Toxicology, 68, 301-313.
https://doi.org/10.1016/j.aquatox.2004.03.019
[47]  Yu, R.M.K., Ng, P.K.S., Tan, T., et al. (2008) Enhancement of Hypoxia-Induced Gene Expression in Fish Liver by the Aryl Hydrocarbon Receptor (AhR) Ligand, Benzo[a]pyrene (BaP). Aquatic Toxicology, 90, 235-242.
https://doi.org/10.1016/j.aquatox.2008.09.004
[48]  吉宇丹, 孙志鹏, 吕伟华, 等. 梭鲈Ho1基因的克隆及其低氧胁迫下表达分析[J]. 南方水产科学, 2023, 19(2): 98-106.
[49]  Shi, L.L., et al. (2023) Deletion of the FoxO4 Gene Increases Hypoxia Tolerance in Zebrafish. International Journal of Molecular Sciences, 24, Article No. 8942.
https://doi.org/10.3390/ijms24108942
[50]  Tian, Y-M., Chen, J., Tao, Y., et al. (2014) Molecular Cloning and Function Analysis of Insulin-Like Growth Factor Binding Protein 1a in Blunt Snout Bream (Megalobrama amblycephala). Zoological Research, 35, 300-306.
[51]  Sun, S., Wu, Y., Yu, H., et al. (2019) Serum Biochemistry, Liver Histology and Transcriptome Profiling of Bighead Carp Aristichthys nobilis Following Different Dietary Protein Levels. Fish and Shellfish Immunology, 86, 832-839.
https://doi.org/10.1016/j.fsi.2018.12.028
[52]  Pancholi, V. (2001) Multifunctional Alpha-Enolase: Its Role in Diseases. Cellular and Molecular Life Sciences: CMLS, 58, 902-920.
https://doi.org/10.1007/PL00000910
[53]  Jan, K., Donata, S., Magdalena, G., et al. (2021) Chronic and Cycling Hypoxia: Drivers of Cancer Chronic Inflammation through HIF-1 and NF-κB Activation: A Review of the Molecular Mechanisms. International Journal of Molecular Sciences, 22, Article No. 10701.
https://doi.org/10.3390/ijms221910701
[54]  Nie, H.T., Wang, H.M., Jiang, K.Y. and Yan, X.W. (2020) Transcriptome Analysis Reveals Differential Immune Related Genes Expression in Ruditapes philippinarum under Hypoxia Stress: Potential HIF and NF-κB Crosstalk in Immune Responses in Clam. BMC Genomics, 21, Article No. 318.
https://doi.org/10.1186/s12864-020-6734-6
[55]  Wang, S.Y., Lau, K., Lai, K.-P., et al. (2016) Hypoxia Causes Transgenerational Impairments in Reproduction of Fish. Nature Communications, 7, Article No. 12114.
https://doi.org/10.1038/ncomms12114
[56]  Huang, C.-X., Chen, N., Wu, X.-J., et al. (2015) The Zebrafish MiR-462/MiR-731 Cluster Is Induced under Hypoxic Stress via Hypoxia-Inducible Factor 1α and Functions in Cellular Adaptations. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 29, 4901-4913.
https://doi.org/10.1096/fj.14-267104
[57]  Elie, F.M., Melissa, G., et al. (2022) Epigenetic and Post-Transcriptional Repression Support Metabolic Suppression in Chronically Hypoxic Goldfish. Scientific Reports, 12, Article No. 5576.
https://doi.org/10.1038/s41598-022-09374-8
[58]  Li, X., Li, J., Wang, Y., et al. (2011) Aquaculture Industry in China: Current State, Challenges, and Outlook. Reviews in Fisheries Science, 19, 187-200.
https://doi.org/10.1080/10641262.2011.573597

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413