全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Does the Redshift Distribution of Swift Long GRBs Trace the Star-Formation Rate?

DOI: 10.4236/ijaa.2024.141002, PP. 20-44

Keywords: Gamma-Ray Bursts, Redshift Distribution, Star-Formation Rate

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gamma-ray bursts (GRBs) are extremely powerful explosions that have been traditionally classified into two categories: long bursts (LGRBs) with an observed duration T90 > 2 s, and short bursts (SGRBs) with an observed duration T90 < 2 s, where T90 is the time interval during which 90% of the fluence is detected. LGRBs are believed to emanate from the core-collapse of massive stars, while SGRBs are believed to result from the merging of two compact objects, like two neutron stars. Because LGRBs are produced by the violent death of massive stars, we expect that their redshift distribution should trace the star-formation rate (SFR). The purpose of our study is to investigate the extent to which the redshift distribution of LGRBs follows and reflects the SFR. We use a sample of 370 LGRBs taken from the Swift catalog, and we investigate different models for the LGRB redshift distribution. We also carry out Monte Carlo simulations to check the consistency of our results. Our results indicate that the SFR can describe the LGRB redshift distribution well for high redshift bursts, but it needs an evolution term to fit the distribution well at low redshift.

References

[1]  Klebesadel, R.W., Strong, I.B. and Olson, R.A. (1973) Observations of Gamma-Ray Bursts of Cosmic Origin. The Astrophysical Journal, 182, L85-L88.
[2]  Dainotti, M.G., Lenart, A.Ł., Chraya, A., Sarracino, G., Nagataki, S., Fraija, N., Capozziello, S. and Bogdan, M. (2023) The Gamma-Ray Bursts Fundamental Plane Correlation as a Cosmological Tool. Monthly Notices of the Royal Astronomical Society, 518, 2201-2240.
https://doi.org/10.1093/mnras/stac2752
[3]  De Simone, B., Nielson, V., Rinaldi, E. and Dainotti, M.G. (2022) A New Perspective on Cosmology Through Supernovae Ia and Gamma-Ray Bursts. Proceedings of the 16th Marcel Grossmann Meeting, 5-10 July 2021, 3130-3140.
https://doi.org/doi:10.1142/9789811269776_0256
[4]  Horvath, I., Bagoly, Z., Balazs, L.G., Hakkila, J., Horvath, Z., Joo, A.P., Pinter, S., Tóth, L.V., Veres, P. and Racz, I.I. (2024) Mapping the Universe with Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 527, 7191-7202.
https://doi.org/10.1093/mnras/stad3669
[5]  Kumar, D., Rani, N., Jain, D., Mahajan, S. and Mukherjee, A. (2023). Gamma-Ray Bursts: A Viable Cosmological Probe? Journal of Cosmology and Astroparticle Physics, 2023, Article No. 021.
https://doi.org/10.1088/1475-7516/2023/07/021
[6]  Luongo, O. and Muccino, M. (2021) A Roadmap to Gamma-Ray Bursts: New Developments and Applications to Cosmology. Galaxies, 9, Article No. 77.
https://doi.org/10.3390/galaxies9040077
[7]  Schady, P. (2017) Gamma-Ray Bursts and Their Use as Cosmic Probes. Royal Society Open Science, 4, Article ID: 170304.
https://doi.org/10.1098/rsos.170304
[8]  Xu, F. and Huang, Y.-F. (2022) Probe the Universe by Using Gamma-Ray Bursts with X-Ray Plateaus. Proceedings of the Sixteenth Marcel Grossmann Meeting, 5-10 July 2021, 3124-3129.
https://doi.org/doi:10.1142/9789811269776_0255
[9]  Kouveliotou, C., Meegan, C.A., Fishman, G.J., Bhat, N.P., Briggs, M.S., Koshut, T.M., Paciesas, W.S., Pendleton, G.N., Kouveliotou, C., Meegan, C.A., Fishman, G.J., Bhat, N.P., Briggs, M.S., Koshut, T.M., Paciesas, W.S. and Pendleton, G.N. (1993) Identification of Two Classes of Gamma-Ray Bursts. The Astrophysical Journal Letters, 413, L101.
https://doi.org/10.1086/186969
[10]  Azzam, W.J. and Al Dallal, S. (2015) Gamma-Ray Bursts: Origin, Types, and Prospects. Journal of Magnetohydrodynamics and Plasma Research, 20, 367.
[11]  Dai, Z., Daigne, F. and Mészáros, P. (2017) The Theory of Gamma-Ray Bursts. Space Science Reviews, 212, 409-427.
https://doi.org/10.1007/s11214-017-0423-z
[12]  D’Avanzo, P. (2015) Short Gamma-Ray Bursts: A Review. Journal of High Energy Astrophysics, 7, 73-80.
https://doi.org/10.1016/j.jheap.2015.07.002
[13]  Salvaterra, R., Campana, S., Vergani, S.D., Covino, S., D’Avanzo, P., Fugazza, D., Ghirlanda, G., Ghisellini, G., Melandri, A., Nava, L., Sbarufatti, B., Flores, H., Piranomonte, S. and Tagliaferri, G. (2012) A Complete Sample of Bright Swift Long Gamma-Ray Bursts. I. Sample Presentation, Luminosity Function and Evolution. The Astrophysical Journal, 749, Article No. 68.
https://doi.org/10.1088/0004-637X/749/1/68
[14]  Natarajan, P., Albanna, B., Hjorth, J., Ramirez-Ruiz, E., Tanvir, N. and Wijers, R. (2005) The Redshift Distribution of Gamma-Ray Bursts Revisited. Monthly Notices of the Royal Astronomical Society: Letters, 364, L8-L12.
https://doi.org/10.1111/j.1745-3933.2005.00094.x
[15]  Lan, G.-X., Wei, J.-J., Zeng, H.-D., Li, Y. and Wu, X.-F. (2021) Revisiting the Luminosity and Redshift Distributions of Long Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 508, 52-68.
https://doi.org/10.1093/mnras/stab2508
[16]  Yu, H., Wang, F.Y., Dai, Z.G. and Cheng, K.S. (2015) An Unexpectedly Low-Redshift Excess of Swift Gamma-Ray Burst Rate. The Astrophysical Journal Supplement Series, 218, Article No. 13.
https://doi.org/10.1088/0067-0049/218/1/13
[17]  Le, T. and Mehta, V. (2017) Revisiting the Redshift Distribution of Gamma-Ray Bursts in the Swift Era. The Astrophysical Journal, 837, Article No. 17.
https://doi.org/10.3847/1538-4357/aa5fa7
[18]  Lloyd-Ronning, N.M., Aykutalp, A. and Johnson, J.L. (2019) On the Cosmological Evolution of Long Gamma-Ray Burst Properties. Monthly Notices of the Royal Astronomical Society, 488, 5823-5832.
https://doi.org/10.1093/mnras/stz2155
[19]  Petrosian, V., Kitanidis, E. and Kocevski, D. (2015) Cosmological Evolution of Long Gamma-Ray Bursts and the Star Formation Rate. The Astrophysical Journal, 806, Article No. 44.
https://doi.org/10.1088/0004-637X/806/1/44
[20]  Tsvetkova, A., Frederiks, D., Golenetskii, S., Lysenko, A., Oleynik, P., Pal’shin, V., Svinkin, D., Ulanov, M., Cline, T., Hurley, K. and Aptekar, R. (2017) The Konus-Wind Catalog of Gamma-Ray Bursts with Known Redshifts. I. Bursts Detected in the Triggered Mode. The Astrophysical Journal, 850, Article No. 161.
https://doi.org/10.3847/1538-4357/aa96af
[21]  Lan, G.-X., Zeng, H.-D., Wei, J.-J. and Wu, X.-F. (2019) The Luminosity Function and Formation Rate of a Complete Sample of Long Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 488, 4607-4613.
https://doi.org/10.1093/mnras/stz2011
[22]  Perley, D.A., et al. (2016) The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution. The Astrophysical Journal, 817, Article No. 7.
https://doi.org/10.3847/0004-637x/817/1/7
[23]  Pescalli, A., Ghirlanda, G., Salvaterra, R., Ghisellini, G., Vergani, S.D., Nappo, F., Salafia, O.S., Melandri, A., Covino, S. and Götz, D. (2016) The Rate and Luminosity Function of Long Gamma-Ray Bursts. Astronomy and Astrophysics, 587, A40.
https://doi.org/10.1051/0004-6361/201526760
[24]  Bryant, C.M., Osborne, J.A. and Shahmoradi, A. (2021) How Unbiased Statistical Methods Lead to Biased Scientific Discoveries: A Case Study of the Efron-Petrosian Statistic Applied to the Luminosity-Redshift Evolution of Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 504, 4192-4203.
https://doi.org/10.1093/mnras/stab1098
[25]  Le, T., Ratke, C. and Mehta, V. (2020) Resolving the Excess of Long GRBs at Low Redshift in the Swift Era. Monthly Notices of the Royal Astronomical Society, 493, 1479-1491.
https://doi.org/10.1093/mnras/staa366
[26]  Dong, X.F., Li, X.J., Zhang, Z.B. and Zhang, X.L. (2022) A Comparative Study of Luminosity Functions and Event Rate Densities of Long GRBs with Non-Parametric Method. Monthly Notices of the Royal Astronomical Society, 513, 1078-1087.
https://doi.org/10.1093/mnras/stac949
[27]  Dong, X.F., Zhang, Z.B., Li, Q.M., Huang, Y.F. and Bian, K. (2023) The Origin of Low-Redshift Event Rate Excess as Revealed by the Low-luminosity Gamma-Ray Bursts. The Astrophysical Journal, 958, Article No. 37.
https://doi.org/10.3847/1538-4357/acf852
[28]  Troja, E., et al. (2022) A Nearby Long Gamma-Ray Burst from a Merger of Compact Objects. Nature, 612, 228-231.
https://doi.org/10.1038/s41586-022-05327-3
[29]  Petrosian, V. and Dainotti, M.G. (2023) Progenitors of Low Redshift Gamma-Ray Bursts.
https://arxiv.org/abs/2305.15081
[30]  Ghirlanda, G. and Salvaterra, R. (2022) The Cosmic History of Long Gamma-Ray Bursts. The Astrophysical Journal, 932, Article No. 10.
https://doi.org/10.3847/1538-4357/ac6e43
[31]  Wang, F.Y. and Dai, Z.G. (2014) Long GRBs Are Metallicity-Biased Tracers of Star Formation: Evidence from Host Galaxies and Redshift Distribution. The Astrophysical Journal Supplement Series, 213, Article No. 15.
https://doi.org/10.1088/0067-0049/213/1/15
[32]  Hopkins, A.M. and Beacom, J.F. (2006) On the Normalization of the Cosmic Star Formation History. The Astrophysical Journal, 651, 142-154.
https://doi.org/10.1086/506610
[33]  Li, L.X. (2008) Star Formation History up to z = 7.4: Implications for Gamma-Ray Bursts and Cosmic Metallicity Evolution. Monthly Notices of the Royal Astronomical Society, 388, 1487-1500.
https://doi.org/10.1111/j.1365-2966.2008.13488.x
[34]  Goodman, J. and Weare, J. (2010) Ensemble Samplers with Affine Invariance. Communications in Applied Mathematics and Computational Science, 5, 65-80.
https://doi.org/10.2140/camcos.2010.5.65
[35]  Foreman-Mackey, D., Hogg, D.W., Lang, D. and Goodman, J. (2013) Emcee: The MCMC Hammer.
http://dan.iel.fm/emcee
[36]  Hogg, D.W. and Foreman-Mackey, D. (2018) Data Analysis Recipes: Using Markov Chain Monte Carlo. The Astrophysical Journal Supplement Series, 236, Article No. 11.
https://doi.org/10.3847/1538-4365/aab76e
[37]  Akaike, H. (1974) A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716-723.
https://doi.org/10.1109/TAC.1974.1100705
[38]  Liddle, A.R. (2007) Information Criteria for Astrophysical Model Selection. Monthly Notices of the Royal Astronomical Society, 377, L74-L78.
https://doi.org/10.1111/j.1745-3933.2007.00306.x
[39]  Deng, Q., Zhang, Z.-B., Li, X.-J., Chang, H.-Y., Zhang, X.-L., Zhen, H.-Y., Sun, H., Pan, Q. and Dong, X.-F. (2022) Reclassifying Swift Gamma-Ray Bursts with Diverse Duration Distributions. The Astrophysical Journal, 940, Article No. 5.
https://doi.org/10.3847/1538-4357/ac9590
[40]  Kulkarni, S. and Desai, S. (2016) Classification of Gamma-Ray Burst Durations Using Robust Model-Comparison Techniques.
[41]  Ruffini, R., Rueda, J.A., Muccino, M., Aimuratov, Y., Becerra, L.M., Bianco, C.L., Kovacevic, M., Moradi, R., Oliveira, F.G., Pisani, G.B. and Wang, Y. (2016) On the Classification of GRBs and Their Occurrence Rates. The Astrophysical Journal, 832, Article No. 136.
https://doi.org/10.3847/0004-637x/832/2/136
[42]  Salmon, L., Hanlon, L. and Martin-Carrillo, A. (2022) Two Classes of Gamma-Ray Bursts Distinguished within the First Second of Their Prompt Emission. Galaxies, 10, Article No. 78.
https://doi.org/10.3390/galaxies10040078
[43]  Steinhardt, C.L., Mann, W.J., Rusakov, V. and Jespersen, C.K. (2023) Classification of BATSE, Swift, and Fermi Gamma-Ray Bursts from Prompt Emission Alone. The Astrophysical Journal, 945, Article No. 67.
https://doi.org/10.3847/1538-4357/acb999
[44]  Tarnopolski, M. (2016) Analysis of the Observed and Intrinsic Durations of Gamma-Ray Bursts with Known Redshift. Astrophysics and Space Science, 361, Article No. 125.
https://doi.org/10.1007/s10509-016-2687-2
[45]  Zitouni, H., Guessoum, N., Azzam, W.J. and Mochkovitch, R. (2015) Statistical Study of Observed and Intrinsic Durations among BATSE and Swift/BAT GRBs. Astrophysics and Space Science, 357, Article No. 7.
https://doi.org/10.1007/s10509-015-2311-x

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413