全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脉冲加热惰气熔融–热导法测定不锈钢冶金粉末中氮含量
Determination of Nitrogen Content in Stainless Steel Metallurgical Powder by Pulse Heating Inert Gas Melting and Thermal Conductivity Method

DOI: 10.12677/MEng.2024.111004, PP. 27-34

Keywords: 不锈钢冶金粉末,氮含量,热导法,镍囊
Stainless Steel Metallurgical Powder
, Nitrogen Content, Thermal Conductivity Method, Nickel Pocket

Full-Text   Cite this paper   Add to My Lib

Abstract:

对脉冲加热惰气熔融-热导法测定不锈钢冶金粉末中氮含量的方法进行优化,试样在110℃干燥箱中干燥1 h,脱气周期2次,脱气功率5.7 kW,燃烧功率为5.2 kW,氮分析时间55 s,样品称样量为0.2 g~0.5 g,锡囊做包裹容器、镍囊做助熔剂,室内空气湿度 < 70%条件下,样品中的氮释放完全,无拖尾现象,可以获得最佳结果。同时校准曲线标准物质与试样均采用锡囊包裹容器、镍囊做助熔剂,可以消除影响。方法的检出限为0.0000408%,检出下限为0.000136%。分别对3种不同含量试样进行精密度试验,测定结果的相对标准偏差(n = 6)为0.32%~0.75%,方法回收率在95.7~105.6之间,方法准确、快速,可用于不锈钢冶金粉末中氮含量的快速测定。
The method of determination of nitrogen content in stainless steel metallurgical powder by pulse heating inert gas melting and thermal conductivity was optimized. The sample was dried in a drying oven at 110?C for 1 h, the degassing cycle was 2 times, the degassing power was 5.7 kW, the combustion power was 5.2 kW, the nitrogen analysis time was 55 s, the sample weight was 0.2 g~0.5 g, the tin bag was used as the wrapping container, and the nickel bag was used as the flux. Under the condition of indoor air humidity < 70%, the nitrogen release in the sample is complete and there is no trailing phenomenon, so the best results can be obtained. At the same time, the standard material of calibration curve and the sample are both coated with tin capsule and nickel capsule as flux, which can eliminate the influence. The detection limit of the method was 0.0000408% and the detection limit was 0.000136%. The relative standard deviation (n = 6) of the measured results was 0.32%~0.75%, and the recovery rate was 95.7~105.6. The method is accurate and rapid, and can be used for the rapid determination of nitrogen content in stainless steel metallurgy powder.

References

[1]  贾成厂, 况春江. 粉末冶金高氮不锈钢的发展历程[J]. 金属世界, 2015(1): 23-27.
[2]  徐静茹, 张卫东, 杨鹏, 等. 粉末冶金钛基层状材料研究进展[J]. 粉末冶金技术, 2023, 41(1): 71-78.
[3]  胡玲. 粉末冶金高氮无镍奥氏体不锈钢的制备、组织和性能[D]. 广东: 华南理工大学, 2020.
[4]  姜霞, 郑志方, 陈奎生. 硅氮合金产品的开发生产与应用[J]. 铁合金, 2012, 43(5): 12-14.
[5]  宁小智, 邢长军, 雍歧龙, 等. 氮含量对无镍奥氏体不锈钢力学性能的影响[J]. 中国冶金, 2019, 29(5): 53-57.
[6]  杨晓滔, 曾荷峰, 付仕梅, 等. NiPt合金中含氧和氮量的测定[J]. 贵金属, 2022, 43(z1): 160-162.
[7]  朱春要, 秦建, 赵希文, 等. 脉冲熔融-红外/热导法测定钛合金粉末微注射成形脱脂坯中氧氮氢[J]. 中国无机分析化学, 2023, 13(5): 499-504.
[8]  王宽, 周恺, 李波, 等. 惰气熔融-红外/热导法同时测定锆合金中氧和氮[J]. 冶金分析, 2017, 37(1): 81-84.
[9]  蔺菲, 王蓬, 李朝,等. 惰气熔融-红外吸收/热导法测定铜铬合金中氧和氮[J]. 冶金分析, 2018, 38(7): 38-43.
[10]  何克伦, 董敏, 华雁芬. 脉冲加热-热导法测定氮化锰粉末中的氮含量[J]. 化学分析计量, 2010, 19(4): 48-49.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413