全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Are James Webb Space Telescope Observations Consistent with Warm Dark Matter?

DOI: 10.4236/ijaa.2024.141003, PP. 45-60

Keywords: James Webb Space Telescope, JWST, Warm Dark Matter

Full-Text   Cite this paper   Add to My Lib

Abstract:

We compare observed with predicted distributions of galaxy stellar masses?M*?and galaxy rest-frame ultra-violet luminosities per unit bandwidth LUV, in the redshift range z=2?to 13. The comparison is presented as a function of the comoving warm dark matter free-streaming cut-off wavenumber kfs. For this comparison the theory is a minimal extension of the Press-Schechter formalism with only two parameters: the star formation efficiency, and a proportionality factor between the star formation rate per galaxy and LUV. These two parameters are fixed to their values obtained prior to the James Webb Space Telescope (JWST) data. The purpose of this comparison is to identify if, and where, detailed astrophysical evolution is needed to account for the new JWST observations.

References

[1]  Gupta, R.P. (2023) JWST Early Universe Observations and ΛCDM Cosmology. Monthly Notices of the Royal Astronomical Society, 524, 3385-3395.
https://doi.org/10.1093/mnras/stad2032
[2]  Maio, U. and Viel, M. (2023) JWST High-Redshift Galaxy Constraints on Warm and Cold Dark Matter Models. Astronomy & Astrophysics, 672, Article No. A71.
https://doi.org/10.1051/0004-6361/202345851
[3]  Behroozi, P.S., Wechsler, R.H. and Conroy, C. (2013) The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8. The Astrophysical Journal, 770, Article 57.
https://doi.org/10.1088/0004-637X/770/1/57
[4]  Song. M., et al. (2016) The Evolution of the Galaxy Stellar Mass Function at z = 4-8: A Steepening Low-Mass-End Slope with Increasing Redshift. The Astrophysical Journal, 825, Article 5.
https://doi.org/10.3847/0004-637X/825/1/5
[5]  Bouwens, R.J., et al. (2021) New Determinations of the Luminosity Functions from z ≈ 9 to z ≈ 2 Show Remarkable Consistency with Halo Growth and a Constant Star Formation Efficiency. The Astronomical Journal, 162, Article 47.
https://arxiv.org/pdf/2102.07775.pdf
https://doi.org/10.3847/1538-3881/abf83e
[6]  Lapi, A., Mancuso, C., Bressan, A. and Danese, L. (2017) Stellar Mass Function of Active and Quiescent Galaxies via the Continuity Equation. The Astrophysical Journal, 847, Article 13.
https://doi.org/10.3847/1538-4357/aa88c9
[7]  Navarro-Carrera, R., Rinaldi, P., Caputi, K.I., Iani, E., Kokorev, V. and van Mierlo, S. (2023) Constraints on the Faint End of the Galaxy Stellar Mass Function at z ≈ 4-8 from Deep JWST Data. The Astrophysical Journal, 961, Article 207.
https://doi.org/10.3847/1538-4357/ad0df6
[8]  Workman, R.L., et al. (2022) The Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2022, 083C01.
[9]  Willmer, C.N.A. (2018) The Absolute Magnitude of the Sun in Several Filters. The Astrophysical Journal Supplement Series, 236, Article 47.
https://iopscience.iop.org/article/10.3847/1538-4365/aabfdf/pdf
https://doi.org/10.3847/1538-4365/aabfdf
[10]  Press, W.H. and Schechter, P. (1974) Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. The Astrophysical Journal, 187, 425-438.
https://doi.org/10.1086/152650
[11]  Sheth, R.K. and Tormen, G. (1999) Large-Scale Bias and the Peak Background Split. Monthly Notices of the Royal Astronomical Society, 308, 119-126.
https://doi.org/10.1046/j.1365-8711.1999.02692.x
[12]  Sheth, R.K., Mo, H.J. and Tormen, G. (2001) Ellipsoidal Collapse and an Improved Model for the Number and Spatial Distribution of Dark Matter Haloes. Monthly Notices of the Royal Astronomical Society, 323, 1-12.
https://doi.org/10.1046/j.1365-8711.2001.04006.x
[13]  Madau, P., Pozzetti, L. and Dickinson, M. (1998) The Star Formation History of Field Galaxies. The Astrophysical Journal, 498, 106-116.
https://iopscience.iop.org/article/10.1086/305523/pdf
https://doi.org/10.1086/305523
[14]  Hoeneisen, B. (2020) Fermion or Boson Dark Matter? International Journal of Astronomy and Astrophysics, 10, 203-223.
https://doi.org/10.4236/ijaa.2020.103011
[15]  Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Galaxy Stellar Masses, UV Luminosities, and Reionization. International Journal of Astronomy and Astrophysics, 12, 258-272.
https://doi.org/10.4236/ijaa.2022.123015
[16]  Oesch, P.A., Bouwens, R.J., Illingworth, G.D., Labbé, I. and Stefanon, M. (2018) The Dearth of z ≈ 10 Galaxies in All HST Legacy Fields—The Rapid Evolution of the Galaxy Population in the First 500 Myr. The Astrophysical Journal, 855, Article 105.
https://doi.org/10.3847/1538-4357/aab03f
[17]  Finkelstein, S.L., Papovich, C., Salmon, B., et al. (2012) Candels: The Evolution of Galaxy Rest-frame Ultraviolet Colors from z = 8 to 4. The Astrophysical Journal, 756, Article 164.
https://doi.org/10.1088/0004-637X/756/2/164
[18]  Adams, N.J., Conselice, C.J., Austin, D., et al. (2023) EPOCHS Paper II: The Ultraviolet Luminosity Function from 7.5 < z < 13.5 Using 180 Square Arcminutes of Deep, Blank-Fields from the PEARLS Survey and Public JWST Data. arXiv: 2304.13721.
[19]  Bouwens, R., Illingworth, G., Oesch, P., et al. (2023) UV Luminosity Density Results at z > 8 from the First JWST/NIRCam Fields: Limitations of Early Data Sets and the Need for Spectroscopy. Monthly Notices of the Royal Astronomical Society, 523, 1009-1035.
https://doi.org/10.1093/mnras/stad1014
[20]  Donnan, C.T., McLeod, D.J., Dunlop, J.S., et al. (2023) The Evolution of the Galaxy UV Luminosity Function at Redshifts z≃8-15 from Deep JWST and Ground-Based Near-Infrared Imaging. Monthly Notices of the Royal Astronomical Society, 518, 6011-6040.
https://doi.org/10.1093/mnras/stac3472
[21]  Harikane, Y., Ouchi, M., Oguri, M., et al. (2023) A Comprehensive Study of Galaxies at z ~ 9-16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-Reionization Epoch. The Astrophysical Journal Supplement Series, 265, Article 5.
https://doi.org/10.3847/1538-4365/acaaa9
[22]  Finkelstein, S.L., Bagley, M.B., Ferguson, H.C., et al. (2023) CEERS Key Paper. I. An Early Look into the First 500 Myr of Galaxy Formation with JWST. The Astrophysical Journal Letters, 946, L13.
https://doi.org/10.3847/2041-8213/acade4
[23]  McLeod, D.J., Donnan, C.T., McLure, R.J., et al. (2023) The Galaxy UV Luminosity Function at z≃11 from a Suite of Public JWST ERS, ERO and Cycle-1 Programs. arXiv: 2304.14469.
[24]  Pérez-González, P.G., Costantin, L., Langeroodi, D., et al. (2023) Life beyond 30: Probing the -20 < M_UV < -17 Luminosity Function at 8 < z < 13 with the NIRCam Parallel Field of the MIRI Deep Survey. arXiv: 2302.02429.
[25]  Morishita, T. and Stiavelli, M. (2023) Physical Characterization of Early Galaxies in the Webb’s First Deep Field SMACS J0723.3-7327. The Astrophysical Journal Letters, 946, L35.
https://doi.org/10.3847/2041-8213/acbf50
[26]  Naidu, R.P., Oesch, P.A., van Dokkum, P., et al. (2022) Two Remarkably Luminous Galaxy Candidates at z ≈ 10-12 Revealed by JWST. The Astrophysical Journal Letters, 940, L14.
https://doi.org/10.3847/2041-8213/ac9b22
[27]  Wang, Y., Lei, L., Yuan, G.W. and Fan, Y.Z. (2023) Modeling the JWST High-Redshift Galaxies with a General Formation Scenario and the Consistency with the ΛCDM Model. The Astrophysical Journal Letters, 954, L48.
https://doi.org/10.3847/2041-8213/acf46c
[28]  D’Silva, J.C.J., et al (2023) Star formation and AGN activity 500 Myr after the Big Bang: Insights from JWST. The Astrophysical Journal Letters, 959, L18.
https://doi.org/10.3847/2041-8213/ad103e
[29]  Yung, L.Y.A., Somerville, R.S., Finkelstein, S.L., Wilkins, S.M. and Gardner, J.P. (2023) Are the Ultra-High-Redshift Galaxies at z > 10 Surprising in the Context of Standard Galaxy Formation Models? Monthly Notices of the Royal Astronomical Society, 527, 5929-5948.
https://doi.org/10.1093/mnras/stad3484
[30]  Hoeneisen, B. (2022) Comments on Warm Dark Matter Measurements and Limits. International Journal of Astronomy and Astrophysics, 12, 94-109.
https://doi.org/10.4236/ijaa.2022.121006
[31]  Weinberg, S. (2008) Cosmology. Oxford University Press, Oxford.
[32]  Boyanovsky, D., de Vega, H.J. and Sanchez, N.G. (2008) The Dark Matter Transfer Function: Free Streaming, Particle Statistics and Memory of Gravitational Clustering. Physical Review D, 78, Article ID: 063546.
https://doi.org/10.1103/PhysRevD.78.063546
[33]  Hoeneisen, B. (2023) Understanding the Formation of Galaxies with Warm Dark Matter. Journal of Modern Physics, 14, 1741-1754.
https://doi.org/10.4236/jmp.2023.1413103
[34]  Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Dwarf Galaxy Rotation Curves. International Journal of Astronomy and Astrophysics, 12, 363-381.
https://doi.org/10.4236/ijaa.2022.124021
[35]  Lin, H., Gong, Y., Yue, B. and Chen, X. (2023) Implication of the Stellar Mass Density of High-z Massive Galaxies from JWST on Warm Dark Matter. Research in Astronomy and Astrophysics, 24, Article ID: 015009.
https://doi.org/10.1088/1674-4527/ad0864

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413