全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Research on the Upper Limit of Accuracy for Predicting Theoretical Tandem Mass Spectrometry

DOI: 10.4236/jcc.2024.123011, PP. 184-195

Keywords: Tandem Mass Spectrometry, Spectral Prediction, Theoretical Limit

Full-Text   Cite this paper   Add to My Lib

Abstract:

In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.

References

[1]  Sun, S.W., Yang, F., Yang, Q., et al. (2012) MS-Simulator: Predicting Y-Ion Intensities for Peptides with Two Charges Based on the Intensity Ratio of Neighboring Ions. Journal of Proteome Research, 11, 4509-4516.
https://doi.org/10.1021/pr300235v
[2]  Wang, Y.J., Yang, F., Wu, P., et al. (2015) OpenMS-Simulator: An Open-Source Software for Theoretical Tandem Mass Spectrum Prediction. BMC Bioinformatics, 16, Article No. 110.
https://doi.org/10.1186/s12859-015-0540-1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0540-1
[3]  Zhang, Z.Q. (2004) Prediction of Low-Energy Collision-Induced Dissociation Spectra of Peptides. Analytical Chemistry, 76, 3908-3922.
https://doi.org/10.1021/ac049951b
[4]  Zhang, Z.Q. (2005) Prediction of Low-Energy Collision-Induced Dissociation Spectra of Peptides with Three or More Charges. Analytical Chemistry, 77, 6364-6373.
https://doi.org/10.1021/ac050857k
[5]  Arnold, R., et al. (2006) A Machine Learning Approach to Predicting Peptide Fragmentation Spectra. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 11, 219-230.
[6]  Li, S.J., et al. (2011) On the Accuracy and Limits of Peptide Fragmentation Spectrum Prediction. Analytical Chemistry, 83, 790-796.
https://doi.org/10.1021/ac102272r
[7]  Dong, N.-P., Liang, Y.-Z., Xu, Q.-S., et al. (2014) Prediction of Peptide Fragment Ion Mass Spectra by Data Mining Techniques. Analytical Chemistry, 86, 7446-7454.
https://doi.org/10.1021/ac501094m
[8]  Zhou, X.-X., Zeng, W.-F., Chi, H., et al. (2017) pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning. Analytical Chemistry, 89, 12690-12697.
[9]  Zeng, W.-F., Zhou, X.-X., Zhou, W.-J., et al. (2019) MS/MS Spectrum Prediction for Modified Peptides Using pDeep2 Trained by Transfer Learning. Analytical Chemistry, 91, 9724-9732.
https://doi.org/10.1021/acs.analchem.9b01262
[10]  Tarn, C. and Zeng, W.F. (2021) pDeep3: Towards More Accurate Spectrum Prediction with Fast Few-Shot Learning. Analytical Chemistry, 93, 5815-5822.
https://doi.org/10.1021/acs.analchem.0c05427
[11]  Liu, K.Y., et al. (2020) Full-Spectrum Prediction of Peptides Tandem Mass Spectra using Deep Neural Network. Analytical Chemistry, 92, 4275-4283.
https://doi.org/10.1021/acs.analchem.9b04867
[12]  Gessulat, S., Schmidt, T., Zolg, D.P., et al. (2019) Prosit: Proteome-Wide Prediction of Peptide Tandem Mass Spectra by Deep Learning. Nature Methods, 16, 509-518.
https://doi.org/10.1038/s41592-019-0426-7
https://www.nature.com/articles/s41592-019-0426-7
[13]  Ekvall, M., et al. (2022) Prosit Transformer: A Transformer for Prediction of MS2 Spectrum Intensities. Journal of Proteome Research, 21, 1359-1364.
https://doi.org/10.1021/acs.jproteome.1c00870
[14]  Zolg, D.P., Wilhelm, M., Schnatbaum, K., et al. (2017) Building ProteomeTools Based on a Complete Synthetic Human Proteome. Nature Methods, 14, 259-262.
https://doi.org/10.1038/nmeth.4153
https://www.nature.com/articles/nmeth.4153
[15]  Wihelm, M., Zolg, D.P., Graber, M., et al. (2021) Deep Learning Boosts Sensitivity of Mass Spectrometry-Based Immunopeptidomics. Nature Communications, 12, Article No. 3346.
https://doi.org/10.1038/s41467-021-24263-w
https://www.nature.com/articles/s41467-021-23713-9
[16]  Kulak, N.A., et al. (2014) Minimal, Encapsulated Proteomic-Sample Processing Applied to Copy-Number Estimation in Eukaryotic Cells. Nature Methods, 11, 319-324.
https://doi.org/10.1038/nmeth.2834
https://www.nature.com/articles/nmeth.2834
[17]  Sharma, K., Schmitt, S., Bergner, C.G., et al. (2015) Cell Type- and Brain Region-Resolved Mouse Brain Proteome. Nature Neuroscience, 18, 1819-1831.
https://doi.org/10.1038/nn.4160
https://www.nature.com/articles/nn.4160
[18]  Pinto, M.P., Manda, S.S., Kim, M.-S., et al. (2014) Functional Annotation of Proteome Encoded by Human Chromosome 22. Journal of Proteome Research, 13, 2749-2760.
https://doi.org/10.1021/pr401169d
https://pubs.acs.org/doi/10.1021/pr401169d
[19]  Kim, M.S., Pinto, S.M., Getnet, D., et al. (2014) A Draft Map of the Human Proteome. Nature, 509, 575-581.
https://doi.org/10.1038/nature13302
https://www.nature.com/articles/nature13302
[20]  Olsen, J.V., Macek, B., Lange, O., et al. (2007) Higher-Energy C-Trap Dissociation for Peptide Modification Analysis. Nature Methods, 4, 209-712.
https://doi.org/10.1038/nmeth1060
https://www.nature.com/articles/nmeth1060
[21]  Yuan, Z.F., Liu, C., Wang, H.-P., et al. (2012) pParse: A Method for Accurate Determination of Monoisotopic Peaks in High-Resolution Mass Spectra. Proteomics. 12, 226-235.
https://doi.org/10.1002/pmic.201100081
https://pubmed.ncbi.nlm.nih.gov/22106041/
[22]  Chi, H., Liu, C., Yang, H., et al. (2018) Comprehensive Identification of Peptides in Tandem Mass Spectra Using an Efficient Open Search Engine. Nature Biotechnology, 36, 1059-1061.
https://doi.org/10.1038/nbt.4236
https://www.nature.com/articles/nbt.4236

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413