全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2024 

ω-3多不饱和脂肪酸改善2型糖尿病研究进展
Research Progress of ω-3 Polyunsaturated Fatty Acids in Improving Type 2 Diabetes

DOI: 10.12677/BP.2024.141005, PP. 34-42

Keywords: 2型糖尿病,ω-3多不饱和脂肪酸,炎症,氧化应激,胰岛素抵抗,胰岛β细胞
Type 2 Diabetes
, ω-3 Polyunsaturated Fatty Acids, Inflammation, Oxidative Stress, Insulin Resistance, Pancreatic β-Cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

2型糖尿病(type 2 diabetes mellitus, T2DM)是遗传与环境共同作用的结果,目前公认的2型糖尿病的病理生理变化主要涉及到胰岛素抵抗和胰岛β细胞功能受损。许多研究显示,在T2DM发生发展过程中,炎症与氧化应激是调控胰岛素分泌的重要发病因素。ω-3多不饱和脂肪酸(ω-3 polyunsaturated fatty acid, ω-3PUFAs)在调节炎症反应、糖脂代谢、氧化与抗氧化反应等方面具有重要作用。但能否有效改善T2DM的发病风险,目前尚存争议。本文结合近年来国内外的相关研究进展,综述了ω-3PUFAs在T2DM发病风险的具体作用机制。探讨饮食营养对改善T2DM的意义,为ω-3PUFAs改善T2DM以及相关营养干预提供依据。
Type 2 diabetes (T2DM) is the result of the interaction of heredity and environment. At present, the pathophysiological changes of type 2 diabetes are mainly related to insulin resistance and pancreatic β Impaired cellular function. Many studies have shown that inflammation and oxidative stress are important pathogenic factors regulating insulin secretion during the occurrence and development of T2DM. ω-3 polyunsaturated fatty acids (ω-3 PUFAs) play important roles in regulating inflammatory responses, glucose and lipid metabolism, oxidation, and antioxidant responses. However, there is still controversy over whether it can effectively im-prove the risk of developing T2DM. This article reviews the relevant research progress both domestically and internationally in recent years ω-The specific mechanism of action of ω-3 PUFAs in the risk of developing T2DM. Exploring the significance of dietary nutrition in improving T2DM, in order to ω-3 PUFAs provide a basis for improving T2DM and related nutritional interventions.

References

[1]  Ogurtsova, K., Guariguata, L., Barengo, N.C.W., et al. (2022) IDF Diabetes Atlas: Global Estimates of Undiagnosed Diabetes in Adults. Diabetes Research and Clinical Practice, 183, Article ID: 109118.
https://doi.org/10.1016/j.diabres.2021.109118
[2]  Djuricic, I. and Calder, P.C. (2021) Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients, 13, Article No. 2421.
https://doi.org/10.3390/nu13072421
[3]  孙桂菊, 柳和春, 许登峰, 等. N-3多不饱和脂肪酸的抗炎作用和2型糖尿病[J]. 健康教育与健康促进, 2020, 15(2): 116-119.
[4]  滑丽美, 张力, 吴明月, 等. N-3多不饱和脂肪酸辅助治疗2型糖尿病的临床效果观察[J]. 临床误诊误治, 2021, 34(5): 38-43.
[5]  Brown, T.J., Brainard, J., Song, F., et al. (2019) Omega-3, Omega-6, and Total Dietary Polyunsaturated Fat for Prevention and Treatment of Type 2 Dia-betes Mellitus: Systematic Review and Meta-Analysis of Randomised Controlled Trials. British Medical Journal, 366, L4697.
https://doi.org/10.1136/bmj.l4697
[6]  Chen, C., Yang, Y., Yu, X.F., et al. (2016) Association between Omega-3 Fatty Acids Consumption and the Risk of Type 2 Diabetes: A Meta-Analysis of Cohort Studies. Journal of Diabetes Investigation, 8, 480-488.
https://doi.org/10.1111/jdi.12614
[7]  Pinel, A., Morio-Liondore, B., Capel, F., et al. (2014) N-3 Polyunsaturated Fatty Acids Modulate Metabolism of Insulin-Sensitive Tissues: Implication for the Prevention of Type 2 Diabetes. Jour-nal of Physiology and Biochemistry, 70, 647-658.
https://doi.org/10.1007/s13105-013-0303-2
[8]  薛冰, 母义明. NF-κB信号转导通路与胰岛素抵抗[J]. 辽宁中医药大学学报, 2012, 14(8): 68-71.
[9]  周方圆, 杨宇峰, 等. 2型糖尿病胰岛素与胰岛素抵抗信号转导通路研究进展[J]. 辽宁中医药大学学报, 2016, 18(11): 71-73.
[10]  Casano-va, P. and Monleon, D. (2023) Role of Selenium in Type 2 Diabetes, Insulin Resistance and Insulin Secretion. World Journal of Diabetes, 14, 147-158.
https://doi.org/10.4239/wjd.v14.i3.147
[11]  邱雅, 张磊. 不同配比高N-3/N-6多不饱和脂肪酸对大鼠胰岛素抵抗的影响[J]. 卫生研究, 2013, 42(1): 10-13.
[12]  Castro, G.S., Deminice, R., Si-moes-Ambrosio, L.M.C., et al. (2015) Dietary Docosahexaenoic Acid and Eicosapentaenoic Acid Influence Liver Tri-acylglycerol and Insulin Resistance in Rats Fed a High-Fructose Diet. Marine Drugs, 13, 1864-1881.
https://doi.org/10.3390/md13041864
[13]  lillà, L., Raffaella, S., Immacolata, D., et al. (2013) High-Lard and High-Fish Oil Diets Differ in Their Effects on Insulin Resistance Development, Mitochondrial Morphology and Dynamic Behaviour in Rat Skeletal Muscle. Food and Nutrition Sciences, 4, 105-112.
https://doi.org/10.4236/fns.2013.49A1017
[14]  Zhuang, P., Li, H.Y., Jia, W., et al. (2021) Eicosapentaenoic and Docosahexaenoic Acids Attenuate Hyperglycemia through the Microbiome-Gut-Organs Axis in Db/Db Mice. Microbi-ome, 9, Article No. 185.
https://doi.org/10.1186/s40168-021-01126-6
[15]  Guadarrama-López, A.L., Valdés-Ramos, R. and Martínezcarril-lo, B.E. (2014) Type 2 Diabetes, PUFAs, and Yitamin D: Their Relation to Inflammation. Journal of Immunology Re-search, 2014, Article ID: 860703.
https://doi.org/10.1155/2014/860703
[16]  Deassis, A.M., Rech, A., Longoni, A., et al. (2012) Omega-3 Polyun-saturated Fatty Acids Prevent Lipoperoxidation, Modulate Antioxidant Enzymes, and Reduce Lipid Content but Do Not Alter Glycogen Metabolism in the Livers of Diabetic Rats Fed on a High Fat Thermolyzed Diet. Molecular and Cellular Biochemistry, 361, 151-160.
https://doi.org/10.1007/s11010-011-1099-4
[17]  Flachs, P., Rossmeisl, M. and Kopecky, J. (2014) The Effect of N-3 Fatty Acids on Glucose Homeostasis and Insulin Sensitivity. Physiological Research, 63, S93-S118.
https://doi.org/10.33549/physiolres.932715
[18]  Zheng, J.S., Huang, T., Yang, J., et al. (2012) Marine N-3 Poly-unsaturated Fatty Acids Are Inversely Associated with Risk of Type 2 Diabetes in Asians: A Systematic Review and Meta-Analysis. PLOS ONE, 7, E44525.
https://doi.org/10.1371/journal.pone.0044525
[19]  王锋, 孙桂菊, 刘小松, 等. 不同来源ω-3多不饱和脂肪酸对2型糖尿病合并血脂异常人群糖脂代谢的影响[J]. 中华预防医学杂志, 2019, 53(6): 570-575.
[20]  Feng, M., Liu, F., Xing, J.L., et al. (2021) Anemarrhena Saponins Attenuate Insulin Resistance in Rats with High-Fat Diet-Induced Obesity via the IRS-1/PI3K/AKT Pathway. Journal of Ethnopharmacology, 277, Article ID: 114251.
https://doi.org/10.1016/j.jep.2021.114251
[21]  Degirmenci, I., Ozbayer, C., Kebapci, M.N., et al. (2019) Common Variants of Genes Encoding TLR4 and TLR4 Pathway Members TIRAP and IRAK1 Are Effective on MCP1, IL6, IL1 Beta, and TNF Alpha Levels in Type 2 Diabetes and Insulin Resistance. Inflammation Research, 68, 801-814.
https://doi.org/10.1007/s00011-019-01263-7
[22]  阎婷婷, 赵英政, 等. 氧化应激及炎症对糖尿病肾病的影响[J]. 新乡医学院学报, 2019, 36(8): 701-705.
[23]  孙悦. 高脂饮食通过促进氧化应激和线粒体功能障碍诱导肾脏损伤[D]: [博士学位论文]. 沈阳: 中国医科大学, 2021.
[24]  张暄琳, 李毅, 刘丽, 等. 炎症因子对非PCOS患者颗粒细胞活性氧水平及线粒体DNA拷贝数的影响[J]. 天津医药, 2016, 44(9): 1099-1101.
[25]  Gao, W.W., Du, X.L., Lei, L., et al. (2018) NEFA-Induced ROS Impaired Insulin Signalling through the JNK and P38MAPK Pathways in Non-Alcoholic Steatohepatitis. Journal of Cellular and Molecular Medicine, 22, 3408-3422.
https://doi.org/10.1111/jcmm.13617
[26]  汪洁云, 吴芳, 朱琼. 肥胖儿童血清ω-3多不饱和脂肪酸水平及其与胰岛素抵抗的相关性[J]. 中国妇幼保健, 2023, 38(7): 1246-1249.
[27]  朱玉娟, 王瑞英, 姚敏, 等. 消退素D1改善T2DM小鼠胰岛素抵抗[J]. 基础医学与临床, 2018, 38(9): 1327-1328.
[28]  Hwang, D.H., Kim, J.A. and Lee, J.Y. (2016) Mechanisms for the Activation of Toll-Like Receptor 2/4 by Saturated Fatty Acids and Inhibition by Docosahex-aenoic Acid. European Journal of Pharmacology, 785, 24-35.
https://doi.org/10.1016/j.ejphar.2016.04.024
[29]  Lenighan, Y.M., McNulty, B.A. and Roche, H.M. (2019) Dietary Fat Composition: Replacement of Saturated Fatty Acids with PUFA as a Public Health Strategy, with an Emphasis on α-Linolenic Acid. Proceedings of the Nutrition Society, 78, 234-245.
https://doi.org/10.1017/S0029665118002793
[30]  Sergi, D., Sanz, J.M., Lazzer, S., et al. (2023) Interleukin-18 Is a Potential Biomarker Linking Dietary Fatty Acid Quality and Insulin Resistance: Results from a Cross-Sectional Study in Northern Italy. Nutrients, 15, Article No. 1782.
https://doi.org/10.3390/nu15071782
[31]  曹莉华, 张红琼, 赵倩. 桂枝茯苓丸联合二甲双胍对PCOS患者胰岛素抵抗相关炎症反应、氧化应激反应的影响[J]. 海南医学院学报, 2017, 23(23): 3211-3214, 3218.
[32]  吴明昊, 刘剑,胡桂才, 等. 利拉鲁肽对胰岛素抵抗大鼠肾脏8-羟基脱氧鸟苷、丙二醛及超氧化物歧化酶表达的影响[J]. 临床肾脏病杂志, 2017, 17(3): 177-180.
[33]  Selenscig, D., Ferreira, M.D., Chicco, A., et al. (2018) Dietary Fish Oil Ameliorates Adipose Tissue Dysfunction in Insulin-Resistant Rats Fed a Sucrose-Rich Diet Improving Oxidative Stress, Peroxisome Proliferator-Activated Receptor Gamma and Uncoupling Protein 2. Food & Function, 9, 2496-2507.
https://doi.org/10.1039/C7FO01993A
[34]  Lepretti, M., Martucciello, S., Aceves, M.A.B., et al. (2018) Omega-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondriaand Endoplasmic Reticulum Stress. Nutri-ents, 10, Article No. 350.
https://doi.org/10.3390/nu10030350
[35]  严琴慧, 周炜, 朱晓蕾, 等. 二十碳五烯酸对白色脂肪细胞线粒体功能和氧化还原状态的影响[J]. 营养学报, 2020, 42(6): 568-574.
[36]  Sinha, S., Haque, M., Lugova, H., et al. (2023) The Effect of Omega-3 Fatty Acids on Insulin Resistance. Life, 13, Article No. 1322.
https://doi.org/10.3390/life13061322
[37]  Holloszy, J.O. (2013) Deficiency of Mitochondria in Muscle Does Not Cause Insulin Resistance. Diabetes, 62, 1036-1040.
https://doi.org/10.2337/db12-1107
[38]  吕承安, 王若然, 孟卓贤. 2型糖尿病进程中胰岛β细胞功能变化的分子机制[J]. 遗传, 2022, 44(10): 840-852.
[39]  王子婧. 不同脂肪酸饮食对大鼠胰岛β细胞功能的影响及其机制的探讨[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2011.
[40]  Neuman, J.C., Schaid, M.D., Brill, A.L., et al. (2017) Enriching Islet Phospholipids with Eicosapentaenoic Acid Reduces Prostaglandin E-2 Signaling and Enhances Diabetic-Cell Function. Diabetes, 66, 1572-1585.
https://doi.org/10.2337/db16-1362
[41]  邢朝凤, 唐敏怡, 徐绮华, 等. ω-3多不饱和脂肪酸促进1型糖尿病模型小鼠胰岛β细胞再生的作用研究[J]. 中国药理学通报, 2023, 39(11): 2141-2148.
[42]  Xing, C.F., Tang, M.Y., Yang, J.Q., et al. (2023) Eicosapentaenoic Acid Metabolites Promotes the Trans-Differentia- tion of Pancreatic α Cells to β Cells. Biochemical Pharmacology, 216, Article ID: 115775.
https://doi.org/10.1016/j.bcp.2023.115775
[43]  Baynes, H.M., Mideksa, S. and Ambachew, S. (2018) The Role of Polyunsaturated Fatty Acids (N-3 PUFAs) on the Pancreatic Beta-Cells and Insulin Action. Adipocyte, 7, 81-87.
https://doi.org/10.1080/21623945.2018.1443662
[44]  Zou, H.Y., Zhang, H.J., Zhao, Y.C., et al. (2023) N-3 PUFA Deficiency Aggravates Streptozotocin-Induced Pancreatic Injury in Mice but Dietary Supplementation with DHA/EPA Protects the Pancreas via Suppressing Inflammation, Oxidative Stress and Apoptosis. Marine Drugs, 21, Ar-ticle No. 39.
https://doi.org/10.3390/md21010039
[45]  Bi, X.Y., Li, F.H., Liu, S.S., et al. (2017) Omega-3 Poly-unsaturated Fatty Acids Ameliorate Type 1 Diabetes and Autoimmunity. Journal of Clinical Investigation, 127, 1757-1771.
https://doi.org/10.1172/JCI87388
[46]  沈淼达. 解偶联蛋白2和φ-3多不饱和脂肪酸增强胰岛功能与移植物功能的研究[D]: [博士学位论文]. 杭州: 浙江大学, 2011.
[47]  Leite, N.D., Montes, E.G., Fisher, S.V., et al. (2015) Splenectomy Attenuates Obesity and Decreases Insulin Hypersecretion in Hypothalamic Obeserats. Metabo-lism-Clinical and Experimental, 64, 1122-1133.
https://doi.org/10.1016/j.metabol.2015.05.003
[48]  Ganugula, R., Arora, M., Patcharawalai, J., et al. (2016) Orally Bioavailable Curcumin Nanosystems (nCUR) Prevent Pancreatic Islets/Beta Cells from Cellular Stress Induced Inflam-mation and Apoptosis in in Vitro and in Vivo Models of Type 1 Diabetes. FASEB Journal, 30, 1269.2.
https://doi.org/10.1096/fasebj.30.1_supplement.1269.2
[49]  Yang, B.Y., Yang, L., Wang, Y.Y., et al. (2022) Macrophages and Neutrophils Are Necessary for ER Stress-Induced β Cell Loss. Cell Reports, 40, Article ID: 111255.
https://doi.org/10.1016/j.celrep.2022.111255
[50]  沙莎. B细胞通过TLR9-TIMP1信号通路参与调控1型糖尿病发生发展的机制研究及胰岛β细胞TLR9分子通过肠道菌群调控肥胖的机制研究[D]: [博士学位论文]. 济南: 山东大学, 2020.
[51]  Helminen, O., et al. (2017) Localization of Nucleic Acid-Sensing Toll-Like Receptors in Human and Mouse Pancreas. APMIS: Acta Pathologica, Microbiologica, Et Immunologica Seandinavica, 125, 85-92.
https://doi.org/10.1111/apm.12632
[52]  Patel, D., Newell, M., Goruk, S., et al. (2021) Long Chain Polyunsaturated Fatty Acids Docosahexaenoic Acid and Arachidonic Acid Supplementation in the Suckling and the Post-Weaning Diet Influences the Immune System Development of T Helper Type-2 Bias Brown Norway Rat Offspring. Frontiers in Nutri-tion, 8, Article ID: 769293.
https://doi.org/10.3389/fnut.2021.769293
[53]  赵颖. 羟基红花黄色素A改善高糖诱导胰岛β细胞氧化应激的机制研究[D]: [硕士学位论文]. 济南: 山东大学, 2019.
[54]  Dai, H.B., Wang, H.Y., Wang, F.Z., et al. (2022) Adrenomedullin Ameliorates Palmitic Acid-Induced Insulin Resistance through PI3K/Akt Pathway in Adipocytes. Acta Diabetologica, 59, 661-673.
https://doi.org/10.1007/s00592-021-01840-5
[55]  Graciano, M., Leonelli, M., Curi, R., et al. (2016) Omega-3 Fatty Acids Control Productions of Superoxide and Nitrogen Oxide and Insulin Content in INS-1E Cells. Journal of Physiol-ogy and Biochemistry, 72, 699-710.
https://doi.org/10.1007/s13105-016-0509-1
[56]  Wang, X.D., Vatamaniuk, M.Z., Roneker, C.A., et al. (2011) Knockouts of SOD1 and GPX1 Exert Different Impacts on Murine Islet Function and Pancreatic Integrity. Antioxidants & Redox Signaling, 14, 391-401.
https://doi.org/10.1089/ars.2010.3302
[57]  谭惠文, 李农, 向蔚婷. Omega-3多不饱和脂肪酸预防1型糖尿病发病风险的研究进展[J]. 医学综述, 2020, 26(9): 1784-1789.
[58]  傅晶蕾, 楼大钧. 二十二碳六烯酸与炎症因子在糖尿病胰岛素抵抗中的研究进展[J]. 临床医学研究与实践, 2022, 7(20): 193-195.
[59]  于鸿悦, 肖新华, 胡玲. N-3多不饱和脂肪酸在胰岛素抵抗、肥胖、糖尿病治疗作用的研究进展[J]. 食品与营养科学, 2016, 5(4): 188-193.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413