全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不对称C-N交叉偶联反应的研究进展
Research Progress of Asymmetric C-N Cross-Coupling Reaction

DOI: 10.12677/jocr.2024.121003, PP. 31-47

Keywords: C-N偶联,胺化反应,过渡金属,有机小分子
C-N Coupling
, Amination Reaction, Transition Metals, Small Organic Molecules

Full-Text   Cite this paper   Add to My Lib

Abstract:

在过去几十年中,C-N交叉偶联反应构建手性胺类化合物在药物、材料和催化领域发挥了着重要作用。然而,由于C-N键具有更高的键解离能,利用不对称C-N交叉偶联方法在构建中心手性、平面手性、轴手性和螺环手性化合物存在一些局限性。本文重点介绍了目前成熟的构建不对称C-N键的方法,如过渡金属Pd与Cu催化、手性有机小分子催化,并简要概括其化学实用性。
In the past few decades, the construction of chiral amines by C-N cross-coupling reactions has played an important role in the fields of drugs, materials and catalysis. However, due to the higher bond dissociation energy of the C-N bond, the asymmetric C-N cross-coupling method has some limitations in the construction of central chiral, planar chiral, axial chiral and spirocyclic chiral compounds. This review focuses on the current mature methods for the construction of asymmetric C-N bonds, such as transition metal Pd and Cu catalysis, chiral organic small molecule catalysis, and briefly summarizes their chemical practicability.

References

[1]  Ullmann, F. and Bielecki, J. (1901) Ueber Synthesen in der Biphenylreihe. Berichte der Deutschen Chemischen Gesellschaft, 34, 2174-2185.
https://doi.org/10.1002/cber.190103402141
[2]  Li, T., Zhou, Q., Meng, F., Cui, W., Li, Q., Zhu, J. and Cao, Y. (2023) Asymmetric Reductive Amination in Organocatalysis and Biocatalysis. European Journal of Organic Chemistry, 26, e202300507.
https://doi.org/10.1002/ejoc.202300507
[3]  Altman, R.A., Hyde, A.M., Huang, X. and Buchwald, S.L. (2008) Orthogonal Pd-and Cu-Based Catalyst Systems for C-and N-Arylation of Oxindoles. Journal of the American Chemical Society, 130, 9613-9620.
https://doi.org/10.1021/ja803179s
[4]  Tye, J.W., Weng, Z., Johns, A.M., Incarvito, C.D. and Hartwig, J.F. (2008) Copper Complexes of Anionic Nitrogen Ligands in the Amidation and Imidation of Aryl Halides. Journal of the American Chemical Society, 130, 9971-9983.
https://doi.org/10.1021/ja076668w
[5]  Dennis, J.M., White, N.A., Liu, R.Y. and Buchwald, S.L. (2018) Breaking the Base Barrier: An Electron-Deficient Palladium Catalyst Enables the Use of a Common Soluble Base in C-N Coupling. Journal of the American Chemical Society, 140, 4721-4725.
https://doi.org/10.1021/jacs.8b01696
[6]  Lu, C.-J., Xu, Q., Feng, J. and Liu, R.-R. (2023) The Asymmetric Buchwald-Hartwig Amination Reaction. Angewandte Chemie International Edition, 62, e202216863.
https://doi.org/10.1002/anie.202216863
[7]  Tagashira, J., Imao, D., Yamamoto, T., Ohta, T., Furukawa, I. and Ito, Y. (2005) Optically Active Palladium-Catalyzed Asymmetric Amination of Aryl Halide. Tetrahedron: Asymmetry, 16, 2307-2314.
https://doi.org/10.1016/j.tetasy.2005.06.002
[8]  Li, H., Belyk, K.M., Yin, J., Chen, Q., Hyde, A., Ji, Y., Oliver, S., Tudge, M.T., Campeau, L.-C. and Campos, K.R. (2015) Enantioselective Synthesis of Hemiaminals via Pd-Catalyzed C-N Coupling with Chiral Bisphosphine Mono-Oxides. Journal of the American Chemical Society, 137, 13728-13731.
https://doi.org/10.1021/jacs.5b05934
[9]  Takenaka, K., Itoh, N. and Sasai, H. (2009) Enantioselective Synthesis of C2-Symmetric Spirobilactams via Pd-Catalyzed Intramolecular Double N-Arylation. Organic Letters, 11, 1483-1486.
https://doi.org/10.1021/ol900016g
[10]  Porosa, L. and Viirre, R.D. (2009) Desymmetrization of Malonamides via an Enantioselective Intramolecular Buchwald-Hartwig Reaction. Tetrahedron Letters, 50, 4170-4173.
https://doi.org/10.1016/j.tetlet.2009.04.133
[11]  LaPlante, S.R., Fader, L.D., Fandrick, K.R., Fandrick, D.R., Hucke, O., Kemper, R., Miller, S.P.F. and Edwards, P.J. (2011) Assessing Atropisomer Axial Chirality in Drug Discovery and Development. Journal of Medicinal Chemistry, 54, 7005-7022.
https://doi.org/10.1021/jm200584g
[12]  Ramírez-López, P., Ros, A., Romero-Arenas, A., Iglesias-Sigüenza, J., Fernández, R. and Lassaletta, J.M. (2016) Synthesis of IAN-Type N,N-Ligands via Dynamic Kinetic Asymmetric Buchwald-Hartwig Amination. Journal of the American Chemical Society, 138, 12053-12056.
https://doi.org/10.1021/jacs.6b07972
[13]  Wang, X., Liu, W.-G., Liu, L.-T., Yang, X.-D., Niu, S., Tung, C.-H., Wu, L.-Z. and Cong, H. (2021) Palladium-Catalyzed Desymmetric Intermolecular C-N Coupling Enabled by a Chiral Monophosphine Ligand Derived from Anthracene Photodimer. Organic Letters, 23, 5485-5490.
https://doi.org/10.1021/acs.orglett.1c01839
[14]  Rossen, K., Pye, P.J., Maliakal, A. and Volante, R.P. (1997) Kinetic Resolution of rac-4, 12-Dibromo[2.2]paracyclophane in a Palladium [2.2]PHANEPHOS Catalyzed Amination. The Journal of Organic Chemistry, 62, 6462-6463.
https://doi.org/10.1021/jo971300a
[15]  Kitagawa, O., Takahashi, M., Yoshikawa, M. and Taguchi, T. (2005) Efficient Synthesis of Optically Active Atropisomeric Anilides through Catalytic Asymmetric N-Arylation Reaction. Journal of the American Chemical Society, 127, 3676-3677.
https://doi.org/10.1021/ja042216x
[16]  Takahashi, M., Tanabe, H., Nakamura, T., Kuribara, D., Yamazaki, T. and Kitagawa, O. (2010) Atropisomeric Lactam Chemistry: Catalytic Enantioselective Synthesis, Application to Asymmetric Enolate Chemistry and Synthesis of Key Intermediates for NET Inhibitors. Tetrahedron, 66, 288-296.
https://doi.org/10.1016/j.tet.2009.10.095
[17]  Nakazaki, A., Miyagawa, K., Miyata, N. and Nishikawa, T. (2015) Synthesis of a C-N Axially Chiral N-Arylisatin through Asymmetric Intramolecular N-Arylation. European Journal of Organic Chemistry, 2015, 4603-4606.
https://doi.org/10.1002/ejoc.201500593
[18]  Zhang, P., Wang, X.-M., Xu, Q., Guo, C.-Q., Wang, P., Lu, C.-J. and Liu, R.-R. (2021) Enantioselective Synthesis of Atropisomeric Biaryls by Pd-Catalyzed Asymmetric Buchwald-Hartwig Amination. Angewandte Chemie International Edition, 60, 21718-21722.
https://doi.org/10.1002/anie.202108747
[19]  Zhang, P., Xu, Q., Wang, X.-M., Feng, J., Lu, C.-J., Li, Y. and Liu, R.-R. (2022) Enantioselective Synthesis of N-N Bisindole Atropisomers. Angewandte Chemie International Edition, 61, e202212101.
https://doi.org/10.1002/anie.202212101
[20]  Tong, S., Li, J.-T., Liang, D.-D., Zhang, Y.-E., Feng, Q.-Y., Zhang, X., Zhu, J. and Wang, M.-X. (2020) Catalytic Enantioselective Synthesis and Switchable Chiroptical Property of Inherently Chiral Macrocycles. Journal of the American Chemical Society, 142, 14432-14436.
https://doi.org/10.1021/jacs.0c05369
[21]  Zhou, L., Cheng, H.-G., Li, L., Wu, K., Hou, J., Jiao, C., Deng, S., Liu, Z., Yu, J.-Q. and Zhou, Q. (2023) Synthesis of Planar Chiral Ferrocenes via Enantioselective Remote C-H Activation. Nature Chemistry, 15, 815-823.
https://doi.org/10.1038/s41557-023-01176-3
[22]  Kainz, Q.M., Matier, C.D., Bartoszewicz, A., Zultanski, S.L., Peters, J.C. and Fu, G.C. (2016) Asymmetric Copper-Catalyzed C-N Cross-Couplings Induced by Visible Light. Science, 351, 681-684.
https://doi.org/10.1126/science.aad8313
[23]  Bartoszewicz, A., Matier, C.D. and Fu, G.C. (2019) Enantioconvergent Alkylations of Amines by Alkyl Electrophiles: Copper-Catalyzed Nucleophilic Substitutions of Racemic α-Halolactams by Indoles. Journal of the American Chemical Society, 141, 14864-14869.
https://doi.org/10.1021/jacs.9b07875
[24]  Cho, H., Suematsu, H., Oyala, P.H., Peters, J.C. and Fu, G.C. (2022) Photoinduced, Copper-Catalyzed Enantioconvergent Alkylations of Anilines by Racemic Tertiary Electrophiles: Synthesis and Mechanism. Journal of the American Chemical Society, 144, 4550-4558.
https://doi.org/10.1021/jacs.1c12749
[25]  Li, M.-L., Yu, J.-H., Li, Y.-H., Zhu, S.-F. and Zhou, Q.-L. (2019) Highly Enantioselective Carbene Insertion into N-H Bonds of Aliphatic Amines. Science, 366, 990-994.
https://doi.org/10.1126/science.aaw9939
[26]  Chen, J.-J., Fang, J.-H., Du, X.-Y., Zhang, J.-Y., Bian, J.-Q., Wang, F.-L., Luan, C., Liu, W.-L., Liu, J.-R., Dong, X.-Y., Li, Z.-L., Gu, Q.-S., Dong, Z. and Liu, X.-Y. (2023) Enantioconvergent Cu-Catalysed N-Alkylation of Aliphatic Amines. Nature, 618, 294-300.
https://doi.org/10.1038/s41586-023-05950-8
[27]  Beletskaya, I.P. and Averin, A.D. (2021) Metal-Catalyzed Reactions for the C(sp2)-N Bond Formation: Achievements of Recent Years. Russian Chemical Reviews, 90, Article No. 1359.
https://doi.org/10.1070/RCR4999
[28]  Beletskaya, I.P. and Cheprakov, A.V. (2012) The Complementary Competitors: Palladium and Copper in C-N Cross-Coupling Reactions. Organometallics, 31, 7753-7808.
https://doi.org/10.1021/om300683c
[29]  Hantzsch, A. (1881) Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen. Berichte der deutschen chemischen Gesellschaft, 14, 1637-1638.
https://doi.org/10.1002/cber.18810140214
[30]  Simón, L. and Goodman, J.M. (2008) Theoretical Study of the Mechanism of Hantzsch Ester Hydrogenation of Imines Catalyzed by Chiral BINOL-Phosphoric Acids. Journal of the American Chemical Society, 130, 8741-8747.
https://doi.org/10.1021/ja800793t
[31]  Marcelli, T., Hammar, P. and Himo, F. (2008) Phosphoric Acid Catalyzed Enantioselective Transfer Hydrogenation of Imines: A Density Functional Theory Study of Reaction Mechanism and the Origins of Enantioselectivity. ChemistryA European Journal, 14, 8562-8571.
https://doi.org/10.1002/chem.200800890
[32]  Rueping, M., Sugiono, E., Azap, C., Theissmann, T. and Bolte, M. (2005) Enantioselective Br?nsted Acid Catalyzed Transfer Hydrogenation: Organocatalytic Reduction of Imines. Organic Letters, 7, 3781-3783.
https://doi.org/10.1021/ol0515964
[33]  List, S.B. (2005) A Powerful Bronsted Acid Catalyst for the Organocatalytic Asymmetric Transfer Hydrogenation of Imines. Angewandte Chemie, 44, 7424-7427.
https://doi.org/10.1002/anie.200503062
[34]  Storer, R.I., Carrera, D.E., Ni, Y. and MacMillan, D.W.C. (2006) Enantioselective Organocatalytic Reductive Amination. Journal of the American Chemical Society, 128, 84-86.
https://doi.org/10.1021/ja057222n
[35]  Xu, C., Zhang, L. and Luo, S. (2014) Merging Aerobic Oxidation and Enamine Catalysis in the Asymmetric α-Amination of β-Ketocarbonyls Using N-Hydroxycarbamates as Nitrogen Sources. Angewandte Chemie International Edition, 53, 4149-4153.
https://doi.org/10.1002/anie.201400776
[36]  Singh, V.K., Zhu, C., De, C.K., Leutzsch, M., Baldinelli, L., Mitra, R., Bistoni, G. and List, B. (2023) Taming Secondary Benzylic Cations in Catalytic Asymmetric SN1 Reactions. Science, 382, 325-329.
https://doi.org/10.1126/science.adj7007
[37]  Wei, Y., Sun, F., Li, G., Xu, S., Zhang, M. and Hong, L. (2023) Enantioselective Synthesis of N-N Amide-Pyrrole Atropisomers via Paal-Knorr Reaction. Organic Letters.
https://doi.org/10.1021/acs.orglett.3c03280
[38]  Wang, S.-J., Wang, X., Xin, X., Zhang, S., Yang, H., Wong, M.W. and Lu, S. (2024) Organocatalytic Diastereo-and Atroposelective Construction of N-N Axially Chiral Pyrroles and Indoles. Nature Communications, 15, Article No. 518.
https://doi.org/10.1038/s41467-024-44743-z

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413