全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

合成OCF3化合物的研究进展
Research Progress in the Synthesis of OCF3 Compounds

DOI: 10.12677/jocr.2024.121005, PP. 60-73

Keywords: 三氟氧甲氧基化,三氟氧甲氧化物的合成方法,含氟药物分子
Trifluoromethoxylation
, Synthetic Methods Trifluoromethoxide, Fluorinated Drug Molecules

Full-Text   Cite this paper   Add to My Lib

Abstract:

在以生命科学为研究重点的相关领域中,氟的受欢迎程度仅次于氮杂原子。因为氟是电负性最强的元素,在当今的医药、农业化学和材料科学中起着关键作用。而三氟甲氧基(OCF3)是一种关键的氟化结构,具有独特的物理化学特性。将OCF3基团引入有机分子中,对于设计和开发生物活性化合物具有重要价值。本篇综述主要讲关于合成三氟甲氧基化合物的一些令人印象深刻的策略。
In related fields with a focus on life sciences, fluorine is second only to nitrogen heteroatoms in popularity. Because fluorine is the most electronegative element, it plays a crucial role in today's medicine, agricultural chemistry, and materials science. And trifluoromethoxy (OCF3) is a key fluorinated structure with unique physical and chemical properties. Introducing OCF3 groups into organic molecules is of great value for the design and development of bioactive compounds. This review mainly discusses some impressive strategies for synthesizing trifluoromethoxy compounds.

References

[1]  Purser, S., Moore, P.R., Swallow, S. and Gouverneur, V. (2008) Fluorine in Medicinal Chemistry. Chemical Society Reviews, 37, 320-330.
https://doi.org/10.1039/B610213C
[2]  Ojima, I. (2009) Fluorine in Medicinal Chemistry and Chemical Biology. Blackwell Publishing Ltd., Hoboken.
https://doi.org/10.1002/9781444312096
[3]  Liang, T., Neumann, C.N. and Ritter, T. (2013) Introduction of Fluorine and Fluorine-Containing Functional Groups. Angewandte Chemie International Edition, 52, 8214-8264.
https://doi.org/10.1002/anie.201206566
[4]  Müller, K., Faeh, C., & Diederich, F. (2007) Fluorine in Pharmaceuticals: Looking beyond Intuition. Science, 317, 1881-1886.
https://doi.org/10.1126/science.1131943
[5]  Jiang, X. and Tang, P. (2021) Recent Advances of Trifluoromethoxylation Reactions Using TFMS and TFBO. Chinese Journal of Chemistry, 39, 255-264.
https://doi.org/10.1002/cjoc.202000465
[6]  Wang, Q., Yu, X., Jin, J., Wu, Y. and Liang, Y. (2018) Difunctionalization of Alkynes: Synthesis of Novel Fluoropolymer Materials. Chinese Journal of Chemistry, 36, 223-226.
https://doi.org/10.1002/cjoc.201700630
[7]  Mamada, M., Shima, H., Yoneda, Y., Shimano, T., Yamada, N., Kakita, K. and Tokito, S. (2015) A Unique Solution-Processable N-Type Semiconductor Material Design for High-Performance Organic Field-Effect Transistors. Chemistry of Materials, 27, 141-147.
https://doi.org/10.1021/cm503579m
[8]  Ma, J.A. and Cahard, D. (2004) Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chemical Reviews, 104, 6119-6146.
https://doi.org/10.1021/cr030143e
[9]  Ma, J.A. and Cahard, D. (2008) Update 1 of: Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chemical Reviews, 108, PR1-PR43.
https://doi.org/10.1021/cr800221v
[10]  Alonso, C., Martínez De Marigorta, E., Rubiales, G. and Palacios, F. (2015) Carbon Trifluoromethylation Reactions of Hydrocarbon Derivatives and Heteroarenes. Chemical Reviews, 115, 1847-1935.
https://doi.org/10.1021/cr500368h
[11]  Yang, X., Wu, T., Phipps, R.J. and Toste, F.D. (2015) Advances in Catalytic Enantioselective Fluorination, Mono-, Di-, and Trifluoromethylation, and Trifluoromethylthiolation Reactions. Chemical Reviews, 115, 826-870.
https://doi.org/10.1021/cr500277b
[12]  Chen, C., Fu, L., Chen, P. and Liu, G. (2017) Recent Advances and Perspectives of Transition Metal-Catalyzed Asymmetric Fluorination Reactions. Chinese Journal of Chemistry, 35, 1781-1788.
https://doi.org/10.1002/cjoc.201700489
[13]  Huang, W., Wan, X. and Shen, Q. (2017) Enantioselective Construction of Trifluoromethoxylated Stereogenic Centers by a Nickel-Catalyzed Asymmetric Suzuki—Miyaura Coupling of Secondary Benzyl Bromides. Angewandte Chemie International Edition, 56, 11986-11989.
https://doi.org/10.1002/anie.201706868
[14]  Kondo, H., Maeno, M., Hirano, K. and Shibata, N. (2018) Asymmetric Synthesis of α-Trifluoromethoxy Ketones with a Tetrasubstituted α-Stereogenic Centre via the Palladium-Catalyzed Decarboxylative Allylic Alkylation of Allyl Enol Carbonates. Chemical Communications, 54, 5522-5525.
https://doi.org/10.1039/C8CC03131B
[15]  Huang, C., Liang, T., Harada, S., Lee, E. and Ritter, T. (2011) Silver-Mediated Trifluoromethoxylation of Aryl Stannanes and Arylboronic Acids. Journal of the American Chemical Society, 133, 13308-13310.
https://doi.org/10.1021/ja204861a
[16]  Zhang, C.P. and Vicic, D.A. (2012) Oxygen-Bound Trifluoromethoxide Complexes of Copper and Gold. Organometallics, 31, 7812-7815.
https://doi.org/10.1021/om3002747
[17]  Chen, S., Huang, Y., Fang, X., Li, H., Zhang, Z., Hor, T.S.A. and Weng, Z. (2015) Aryl-BIAN-Ligated Silver(I) Trifluoromethoxide Complex. Dalton Transactions, 44, 19682-19686.
https://doi.org/10.1039/C5DT02078F
[18]  Besset, T., Jubault, P., Pannecoucke, X. and Poisson, T. (2016) New Entries toward the Synthesis of OCF3-Containing Molecules. Organic Chemistry Frontiers, 3, 1004-1010.
https://doi.org/10.1039/C6QO00164E
[19]  Hojczyk, K.N., Feng, P., Zhan, C. and Ngai, M.Y. (2014) Trifluoromethoxylation of Arenes: Synthesis of Ortho-Trifluoromethoxylated Aniline Derivatives by OCF3 Migration. Angewandte Chemie International Edition, 53, 14559-14563.
https://doi.org/10.1002/anie.201409375
[20]  Zhou, M., Ni, C., Zeng, Y. and Hu, J. (2018) Trifluoromethyl Benzoate: A Versatile Trifluoromethoxylation Reagent. Journal of the American Chemical Society, 140, 6801-6805.
https://doi.org/10.1021/jacs.8b04000
[21]  Zheng, W., Morales-Rivera, C.A., Lee, J.W., Liu, P. and Ngai, M.Y. (2018) Catalytic C—H Trifluoromethoxylation of Arenes and Heteroarenes. Angewandte Chemie International Edition, 57, 9645-9649.
https://doi.org/10.1002/anie.201800598
[22]  Jelier, B.J., Tripet, P.F., Pietrasiak, E., Franzoni, I., Jeschke, G. and Togni, A. (2018) Radical Trifluoromethoxylation of Arenes Triggered by a Visible-Light-Mediated N—O Bond Redox Fragmentation. Angewandte Chemie International Edition, 57, 13784-13789.
https://doi.org/10.1002/anie.201806296
[23]  Leroux, F.R., Manteau, B., Vors, J.P. and Pazenok, S. (2008) Trifluoromethyl Ethers—Synthesis and Properties of an Unusual Substituent. Beilstein Journal of Organic Chemistry, 4, Article 13.
https://doi.org/10.3762/bjoc.4.13
[24]  Lee, K.N., Lee, J.W. and Ngai, M.Y. (2016) Synthesis of Trifluoromethoxylated (Hetero)Arenes via OCF3 Migration. Synlett, 27, 313-319.
https://doi.org/10.1055/s-0035-1560516
[25]  Tlili, A., Toulgoat, F. and Billard, T. (2016) Synthetic Approaches to Trifluoromethoxy-Substituted Compounds. Angewandte Chemie International Edition, 55, 11726-11735.
https://doi.org/10.1002/anie.201603697
[26]  Yagupolskii, L.M. (1987) Aromatic Compounds with New Fluorine-Containing Substituents. Journal of Fluorine Chemistry, 36, 1-28.
https://doi.org/10.1016/S0022-1139(00)82050-3
[27]  Feiring, A.E. (1979) Chemistry in Hydrogen Fluoride. 7. A Novel Synthesis of Aryl Trifluoromethyl Ethers. The Journal of Organic Chemistry, 44, 2907-2910.
https://doi.org/10.1021/jo01330a017
[28]  Mathey, F. ad Bensoam, J. (1973) Reaction De MoF6 Avec Chlorothioformiates D’aryle Nouvelle Synthese Des Aryl Trifluoromethylethers ArOCF3. Tetrahedron Letters, 14, 2253-2256.
https://doi.org/10.1016/S0040-4039(01)87608-5
[29]  Sheppard, W.A. (1964) α-Fluorinated Ethers. I. Aryl Fluoroalkyl Ethers1. The Journal of Organic Chemistry, 29, 1-11.
https://doi.org/10.1021/jo01024a001
[30]  Kuroboshi, M., Suzuki, K. and Hiyama, T. (1992) Oxidative Desulfurization-Fluorination of Xanthates. A Convenient Synthesis of Trifluoromethyl Ethers and Difluoro(Methylthio)Methyl Ethers. Tetrahedron Letters, 33, 4173-4176.
https://doi.org/10.1016/S0040-4039(00)74681-8
[31]  Kanie, K., Tanaka, Y., Suzuki, K., Kuroboshi, M. and Hiyama, T. (2001) A Convenient Synthesis of Trifluoromethyl Ethers by Oxidative Desulfurization-Fluorination of Dithiocarbonates. Bulletin of the Chemical Society of Japan, 73, 471-484.
https://doi.org/10.1246/bcsj.73.471
[32]  Kuroboshi, M., Kanie, K. and Hiyama, T. (2001) Oxidative Desulfurization-Fluorination: A Facile Entry to a Wide Variety of Organofluorine Compounds Leading to Novel Liquid-Crystalline Materials. Advanced Synthsis & Catalysis, 343, 235-250.
https://doi.org/10.1002/1615-4169(20010330)343:3<235::AID-ADSC235>3.0.CO;2-0
[33]  Shimizu, M. and Hiyama, T. (2005) Modern Synthetic Methods for Fluorine-Substituted Target Molecules. Angewandte Chemie International Edition, 44, 214-231.
https://doi.org/10.1002/anie.200460441
[34]  Ben-David, I., Rechavi, D., Mishani, E. and Rozen, S. (1999) A Novel Synthesis of Trifluoromethyl Ethers via Xanthates, Utilizing BrF3. Journal of Fluorine Chemistry, 97, 75-78.
https://doi.org/10.1016/S0022-1139(99)00031-7
[35]  Zhou, M., Ni, C., He, Z. and Hu, J. (2016) O-Trifluoromethylation of Phenols: Access to Aryl Trifluoromethyl Ethers by O-Carboxydifluoromethylation and Decarboxylative Fluorination. Organic Letters, 18, 3754-3757.
https://doi.org/10.1021/acs.orglett.6b01779
[36]  Yu, J., Lin, J.H., Yu, D., Du, R. and Xiao, J.C. (2019) Oxidation of Difluorocarbene and Subsequent Trifluoromethoxylation. Nature Communications, 10, Article No. 5362.
https://doi.org/10.1038/s41467-019-13359-z
[37]  Koller, R., Stanek, K., Stolz, D., Aardoom, R., Niedermann, K. and Togni, A. (2009) Zinc-Mediated Formation of Trifluoromethyl Ethers from Alcohols and Hypervalent Iodine Trifluoromethylation Reagents. Angewandte Chemie International Edition, 48, 4332-4336.
https://doi.org/10.1002/anie.200900974
[38]  Liu, J.B., Chen, C., Chu, L., Chen, Z.H., Xu, X.H. and Qing, F.L. (2015) Silver-Mediated Oxidative Trifluoromethylation of Phenols: Direct Synthesis of Aryl Trifluoromethyl Ethers. Angewandte Chemie International Edition, 54, 11839-11842.
https://doi.org/10.1002/anie.201506329
[39]  Liu, J.B., Xu, X.H. and Qing, F.L. (2015) Silver-Mediated Oxidative Trifluoromethylation of Alcohols to Alkyl Trifluoromethyl Ethers. Organic Letters, 17, 5048-5051.
https://doi.org/10.1021/acs.orglett.5b02522
[40]  Liang, A., Han, S., Liu, Z., Wang, L., Li, J., Zou, D. and Wu, Y. (2016) Regioselective Synthesis of N-Heteroaromatic Trifluoromethoxy Compounds by Direct O—CF3 Bond Formation. Chemistry: A European Journal, 22, 5102-5106.
https://doi.org/10.1002/chem.201505181
[41]  Jiang, X., Deng, Z. and Tang, P. (2018) Direct Dehydroxytrifluoromethoxylation of Alcohols. Angewandte Chemie International Edition, 57, 292-295.
https://doi.org/10.1002/anie.201711050
[42]  Li, Y., Yang, Y., Xin, J. and Tang, P. (2020) Nucleophilic Trifluoromethoxylation of Alkyl Halides Without Silver. Nature Communications, 11, Article No. 755.
https://doi.org/10.1038/s41467-020-14598-1
[43]  Kalim, J., Duhail, T., Pietrasiak, E., Anselmi, E., Magnier, E. and Togni, A. (2021) Direct Trifluoromethylation of Alcohols Using a Hypervalent Iodosulfoximine Reagent. Chemistry: A European Journal, 27, 2638-2642.
https://doi.org/10.1002/chem.202005104
[44]  K?rk?s, M.D., Porco Jr., J.A. and Stephenson, C.R.J. (2016) Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chemical Reviews, 116, 9683-9747.
https://doi.org/10.1021/acs.chemrev.5b00760
[45]  Romero, N.A. and Nicewicz, D.A. (2016) Organic Photoredox Catalysis. Chemical Reviews, 116, 10075-10166.
https://doi.org/10.1021/acs.chemrev.6b00057
[46]  Skubi, K.L., Blum, T.R. and Yoon, T.P. (2016) Dual Catalysis Strategies in Photochemical Synthesis. Chemical Reviews, 116, 10035-10074.
https://doi.org/10.1021/acs.chemrev.6b00018
[47]  Matsui, J.K., Lang, S.B., Heitz, D.R. and Molander, G.A. (2017) Photoredox-Mediated Routes to Radicals: The Value of Catalytic Radical Generation in Synthetic Methods Development. ACS Catalysis, 7, 2563-2575.
https://doi.org/10.1021/acscatal.7b00094
[48]  Jelier, B.J., Tripet, P.F., Pietrasiak, E., Franzoni, I., Jeschke, G. and Togni, A. (2018) Radical Trifluoromethoxylation of Arenes Triggered by a Visible-Light-Mediated N—O Bond Redox Fragmentation. Angewandte Chemie International Edition, 57, 13784-13789.
https://doi.org/10.1002/anie.201806296
[49]  Zheng, W., Lee, J.W., Morales-Rivera, C.A., Liu, P. and Ngai, M.Y. (2018) Redox-Active Reagents for Photocatalytic Generation of the OCF3 Radical and (Hetero)Aryl C—H Trifluoromethoxylation. Angewandte Chemie International Edition, 57, 13795-13799.
https://doi.org/10.1002/anie.201808495
[50]  Cong, F., Wei, Y. and Tang, P. (2018) Combining Photoredox and Silver Catalysis for Azidotrifluoromethoxylation of Styrenes. Chemical Communications, 54, 4473-4476.
https://doi.org/10.1039/C8CC01096J
[51]  Yang, S., Chen, M. and Tang, P. (2019) Visible-Light Photoredox-Catalyzed and Copper-Promoted Trifluoromethoxylation of Arenediazonium Tetrafluoroborates. Angewandte Chemie International Edition, 58, 7840-7844.
https://doi.org/10.1002/anie.201901447
[52]  Duhail, T., Bortolato, T., Mateos, J., Anselmi, E., Jelier, B., Togni, A. and Dell’Amico, L. (2021) Radical α-Trifluoromethoxylation of Ketones Under Batch and Flow Conditions by Means of Organic Photoredox Catalysis. Organic Letters, 23, 7088-7093.
https://doi.org/10.1021/acs.orglett.1c02494
[53]  Dix, S., Golz, P., Schmid, J.R., Riedel, S. and Hopkinson, M.N. (2021) Radical C—H Trifluoromethoxylation of (Hetero)Arenes with Bis(Trifluoromethyl)Peroxide. Chemistry: A European Journal, 27, 11554-11558.
https://doi.org/10.1002/chem.202101621
[54]  Wu, S., Song, H.X. and Zhang, C.P. (2020) Fluoroalkylation of Diazo Compounds with Diverse Rfn Reagents. Chemistry: An Asian Journal, 15, 1660-1677.
https://doi.org/10.1002/asia.202000305
[55]  Xia, Y. and Wang, J. (2020) Transition-Metal-Catalyzed Cross-Coupling with Ketones or Aldehydes via N-Tosylhydrazones. Journal of the American Chemical Society, 142, 10592-10605.
https://doi.org/10.1021/jacs.0c04445
[56]  Zhang, M., Xie, J. and Zhu, C. (2018) A General Deoxygenation Approach for Synthesis of Ketones from Aromatic Carboxylic Acids and Alkenes. Nature Communications, 9, Article No. 3517.
https://doi.org/10.1038/s41467-018-06019-1
[57]  Song, B. and Xu, B. (2017) Metal-Catalyzed C—H Functionalization Involving Isocyanides. Chemical Society Reviews, 46, 1103-1123.
https://doi.org/10.1039/C6CS00384B
[58]  Chen, C., Chen, P. and Liu, G. (2015) Palladium-Catalyzed Intramolecular Aminotrifluoromethoxylation of Alkenes. Journal of the American Chemical Society, 137, 15648-15651.
https://doi.org/10.1021/jacs.5b10971
[59]  Zha, G.F., Han, J.B., Hu, X.Q., Qin, H.L., Fang, W.Y. and Zhang, C.P. (2016) Silver-Mediated Direct Trifluoromethoxylation of α-Diazo Esters via the OCF3 Anion. Chemical Communications, 52, 7458-7461.
https://doi.org/10.1039/C6CC03040H
[60]  Chen, C., Luo, Y., Fu, L., Chen, P., Lan, Y. and Liu, G. (2018) Palladium-Catalyzed Intermolecular Ditrifluoromethoxylation of Unactivated Alkenes: CF3O-Palladation Initiated by Pd(IV). Journal of the American Chemical Society, 140, 1207-1210.
https://doi.org/10.1021/jacs.7b11470
[61]  Yang, H., Wang, F., Jiang, X., Zhou, Y., Xu, X. and Tang, P. (2018) Silver-Promoted Oxidative Benzylic C—H Trifluoromethoxylation. Angewandte Chemie International Edition, 57, 13266-13270.
https://doi.org/10.1002/anie.201807144
[62]  Liu, J., Wei, Y. and Tang, P. (2018) Cobalt-Catalyzed Trifluoromethoxylation of Epoxides. Journal of the American Chemical Society, 140, 15194-15199.
https://doi.org/10.1021/jacs.8b10298
[63]  Huang, Q. and Tang, P. (2020) Silver-Mediated Intermolecular Iodotrifluoromethoxylation of Alkenes. The Journal of Organic Chemistry, 85, 2512-2519.
https://doi.org/10.1021/acs.joc.9b03206
[64]  Wang, F., Guo, Y., Zhang, Y. and Tang, P. (2021) Silver-Catalyzed Dibromotrifluoromethoxylation of Terminal Alkynes. ACS Catalysis, 11, 3218-3223.
https://doi.org/10.1021/acscatal.1c00090
[65]  Xin, J., Deng, X. and Tang, P. (2022) Silver-Catalyzed Trifluoromethoxylation of Aziridines. Organic Letters, 24, 881-885.
https://doi.org/10.1021/acs.orglett.1c04226

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413