全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

共价有机框架在光催化制备过氧化氢中的研究进展与展望
Progress and Prospects of Covalent Organic Frameworks in Photocatalytic Preparation of Hydrogen Peroxide

DOI: 10.12677/jocr.2024.121006, PP. 74-84

Keywords: 共价有机框架,光催化,过氧化氢
Covalent Organic Frameworks
, Photocatalysis, Hydrogen Peroxide

Full-Text   Cite this paper   Add to My Lib

Abstract:

共价有机框架(COFs)是一类新兴的功能性材料,它在光催化领域展现出了巨大的应用潜力,尤其在过氧化氢的合成方面显示出独特的优势。近年来,COFs在光催化合成过氧化氢领域的研究取得了显著的进展。本文旨在详细总结不同类型COFs的设计合成、光催化性能以及相关机理,深入探讨提升COFs在光催化制备过氧化氢性能的策略,包括构建电子供体–受体(D-A)结构、金属掺杂构建异质结和官能团修饰等方面。通过对多篇相关文献的系统分析,强调了COFs在提高光催化效率、增强结构稳定性以及灵活设计光活性单元等方面的独特优势。这些独特优势不仅有望提高过氧化氢的合成效率,还为COFs在光催化中的广泛应用奠定了基础。在此基础上,进一步推动COFs在光催化合成过氧化氢领域的研究,为其未来的发展提供了深刻的理解和启示。总体而言,COFs作为光催化领域的有望材料,具有广阔的应用前景,为绿色能源和可持续发展做出了积极贡献。
Covalent Organic Frameworks (COFs), as a novel class of functional materials, have shown tremendous potential in the field of photocatalysis, particularly demonstrating unique advantages in the synthesis of hydrogen peroxide. In recent years, significant progress has been made in the research on COFs in the photocatalytic synthesis of hydrogen peroxide. This paper aims to comprehensively summarize the design, synthesis, photocatalytic performance, and relevant mechanisms of different types of COFs. It delves into strategies to enhance the photocatalytic performance of COFs in the preparation of hydrogen peroxide, including the construction of electron donor-acceptor (D-A) structures, the introduction of metal doping to form heterojunctions, and functional group modifications. Through a systematic analysis of multiple relevant literature sources, the paper highlights the unique advantages of COFs in improving photocatalytic efficiency, enhancing structural stability, and flexibly designing photoactive units. These advantages are expected not only to boost the efficiency of hydrogen peroxide synthesis but also to lay the foundation for the widespread application of COFs in photocatalysis. Building upon this foundation, further advancements in research on the photocatalytic synthesis of hydrogen peroxide with COFs are anticipated, providing a profound understanding and inspiration for their future development. Overall, COFs, as promising materials in the field of photocatalysis, hold broad application prospects and contribute positively to green energy and sustainable development.

References

[1]  Saravanan, A., Kumar, P.S., Hemavathy, R.V., et al. (2021) A Comprehensive Review on Sources, Analysis and Toxicity of Environmental Pollutants and Its Removal Methods from Water Environment. The Science of the Total Environment, 812, Article ID: 152456.
https://doi.org/10.1016/j.scitotenv.2021.152456
[2]  Feng, W., Yang, F.G. and Liu, J. (2023) Water Environment Pollution and Control in the Dual-Carbon Background. Water, 15, Article No. 3082.
https://doi.org/10.3390/w15173082
[3]  Tang, D., Lu, G., Shen, Z., et al. (2022) A Review on Photo-, Electro-and Photoelectro-Catalytic Strategies for Selective Oxidation of Alcohols. Journal of Energy Chemistry, 77, 80-118.
https://doi.org/10.1016/j.jechem.2022.10.038
[4]  Argurio, P., Fontananova, E., Molinari, R., et al. (2018) Photocatalytic Membranes in Photocatalytic Membrane Reactors. Processes, 6, Article No. 162.
https://doi.org/10.3390/pr6090162
[5]  Yang, L., Fan, D., Li, Z., et al. (2022) A Review on the Bioinspired Photocatalysts and Photocatalytic Systems. Advanced Sustainable Systems, 6, Article ID: 2100477.
https://doi.org/10.1002/adsu.202100477
[6]  Liu, Y., Liu, J., Lu, L.Q., et al. (2019) Organocatalysis Combined with Photocatalysis. Topics in Current Chemistry, 377, 1-15.
https://doi.org/10.1007/s41061-019-0265-0
[7]  Soto, D., Alzate, M., Gallego, J., et al. (2021) Hybrid Nanomaterial/Catalase-Modified Electrode for Hydrogen Peroxide Sensing. Journal of Electroanalytical Chemistry, 880, Article ID: 114826.
https://doi.org/10.1016/j.jelechem.2020.114826
[8]  Léon, C.P.D. (2020) In Situ Anodic Generation of Hydrogen Peroxide. Nature Catalysis, 3, 96-97.
https://doi.org/10.1038/s41929-020-0432-2
[9]  Ren, X., Wang, X., Song, W.-L., et al. (2023) Fascinating Isomeric Covalent Organic Frameworks. Nanoscale, 17, 4762-4771.
https://doi.org/10.1039/D2NR07228A
[10]  Zhu, D., Xu, G., Barnes, M., et al. (2021) Covalent Organic Frameworks for Batteries. Advanced Functional Materials, 31, Article ID: 2100505.
https://doi.org/10.1002/adfm.202100505
[11]  Dong, W., Xiao, Y., Qin, Z., et al. (2023) Partially H-Bonded Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Journal of Materials Chemistry A, 11, 14760-14767.
https://doi.org/10.1039/D3TA01944F
[12]  Chen, Z., Wang, J.-C., Du, J.-Q., et al. (2023) Construction of Multifunctional Covalent Organic Frameworks for Photocatalysis. Chemistry, 30, e202303497.
[13]  Nocera, D.G. (2017) Solar Fuels and Solar Chemicals Industry. Accounts of Chemical Research, 50, 616-619.
https://doi.org/10.1021/acs.accounts.6b00615
[14]  Deng, Z., Zhou, J., Miao, L., et al. (2017) The Emergence of Solar Thermal Utilization: Solar-Driven Steam Generation. Journal of Materials Chemistry, 5, 7691-7709.
https://doi.org/10.1039/C7TA01361B
[15]  El-Khouly, M.E., El-Mohsnawy, E. and Fukuzumi, S. (2017) Solar Energy Conversion: From Natural to Artificial Photosynthesis. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 31, 36-83.
https://doi.org/10.1016/j.jphotochemrev.2017.02.001
[16]  Zhang, Y., Zhang, Y., Li, X.Y., et al. (2020) Photocatalytic Water Splitting of Ternary Graphene-Like Photocatalyst for the Photocatalytic Hydrogen Production. Frontiers of Environmental Science & Engineering, 14, Article No. 69.
https://doi.org/10.1007/s11783-020-1248-7
[17]  Bujak, I.T., Kralj, M.B., Kosyakov, D.S., et al. (2020) Photolytic and Photocatalytic Degradation of Doxazosin in Aqueous Solution. The Science of the Total Environment, 740, Article ID: 140131.
https://doi.org/10.1016/j.scitotenv.2020.140131
[18]  Strunk, J. (2023) Separating Fiction from Fact for Photocatalytic CO2 Reduction. Nature Chemistry, 15, 1209-1211.
https://doi.org/10.1038/s41557-023-01293-z
[19]  Liu, Y.-H., Fernandez, C.A., Varanasi, S.A., et al. (2021) Prospects for Aerobic Photocatalytic Nitrogen Fixation. ACS Energy Letters, 1, 24-29.
https://doi.org/10.1021/acsenergylett.1c02260
[20]  Chen, L., Wang, X., Chen, Y., et al. (2020) Recycling Heavy Metals from Wastewater for Photocatalytic CO2 Reduction. Chemical Engineering Journal, 402, Article ID: 125922.
https://doi.org/10.1016/j.cej.2020.125922
[21]  Li, X., Chen, Y., Tao, Y.-J., et al. (2022) Challenges of Photocatalysis and Their Coping Strategies. Chem Catalysis, 2, 1315-1345.
https://doi.org/10.1016/j.checat.2022.04.007
[22]  Guo, Q., Zhou, C., Ma, Z., et al. (2019) Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Advanced Materials, 31, Article ID: 1901997.
https://doi.org/10.1002/adma.201901997
[23]  Wang, Q., Zheng, K., Yu, H., et al. (2020) Laboratory Experiment on the Nano-TiO2 Photocatalytic Degradation Effect of Road Surface Oil Pollution. Nanotechnology Reviews, 9, 922-933.
https://doi.org/10.1515/ntrev-2020-0072
[24]  Rath, T., Uhrich, A., Lüken, A., et al. (2019) Cl2 Production by Photocatalytic Oxidation of HCl over TiO2. ChemSusChem, 12, 2725-2731.
https://doi.org/10.1002/cssc.201900642
[25]  Lv, P., Duan, F., Sheng, J., et al. (2020) The 2d/2d P-N Heterojunction of Zncomof/G-C3N4 with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Applied Organometallic Chemistry, 35, e6124.
https://doi.org/10.1002/aoc.6124
[26]  Liu, X., Pang, H., Liu, X., et al. (2021) Orderly Porous Covalent Organic Frameworks-Based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions. The Innovation, 2, Article ID: 100076.
https://doi.org/10.1016/j.xinn.2021.100076
[27]  C?té, A.P., Benin, A.I., Ockwig, N.W., et al. (2005) Porous, Crystalline, Covalent Organic Frameworks. Science, 310, 1166-1170.
https://doi.org/10.1126/science.1120411
[28]  Sun, Q., Aguila, B., Perman, J.A., et al. (2017) Postsynthetically Modified Covalent Organic Frameworks for Efficient and Effective Mercury Removal. Journal of the American Chemical Society, 139, 2786-2793.
https://doi.org/10.1021/jacs.6b12885
[29]  Dey, K., Pal, M.K., Rout, K.C., et al. (2017) Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films. Journal of the American Chemical Society, 139, 13083-13091.
https://doi.org/10.1021/jacs.7b06640
[30]  Li, Z., Zhang, Y., Xia, H., et al. (2016) A Robust and Luminescent Covalent Organic Framework as a Highly Sensitive and Selective Sensor for the Detection of Cu(2 ) Ions. Chemical Communications, 52, 6613-6616.
https://doi.org/10.1039/C6CC01476C
[31]  Wang, J. and Zhuang, S. (2019) Covalent Organic Frameworks (COFS) for Environmental Applications. Coordination Chemistry Reviews, 400, Article ID: 213046.
https://doi.org/10.1016/j.ccr.2019.213046
[32]  Ye, L., Xia, Z., Xu, Q., et al. (2023) Controllable Synthesis of Hollow COFS for Boosting Photocatalytic Hydrogen Generation. Chemical Communications, 59, 9872-9875.
https://doi.org/10.1039/D3CC02914J
[33]  Chen, Y., Yang, D., Gao, Y., et al. (2021) On-Surface Bottom-Up Construction of COF Nanoshells towards Photocatalytic H2 Production. Research, 2021, Article ID: 9798564.
https://doi.org/10.34133/2021/9798564
[34]  Si, W., Yang, J., Cao, Y., et al. (2023) Construction of RGO/BP/COF High-Low Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Journal of Alloys and Compounds, 968, Article ID: 172218.
https://doi.org/10.1016/j.jallcom.2023.172218
[35]  Yang, S., Verdaguer-Casadevall, A., Arnarson, L., et al. (2018) Toward the Decentralized Electrochemical Production of H2O2, a Focus on the Catalysis. ACS Catalysis, 8, 4064-4081.
https://doi.org/10.1021/acscatal.8b00217
[36]  Liu, B., Zhang, W., Zhang, Q., et al. (2023) Synergistic Promotion of the Photocatalytic Preparation of Hydrogen Peroxide (H2O2) from Oxygen by Benzoxazine and Si-O-Ti Bond. Small, 19, e2303907.
https://doi.org/10.1002/smll.202303907
[37]  Li, Z., Chen, Y., Wang, Y., et al. (2022) Preparation of Ultra-Thin Porous Carbon Nitride and Its Photocatalytic H2O2 Production and Photodegradation of RHB. SSRN Electronic Journal, 598, Article ID: 153866.
https://doi.org/10.1016/j.apsusc.2022.153866
[38]  Uribe-Romo, F.J., Doonan, C.J., Furukawa, H., et al. (2011) Crystalline Covalent Organic Frameworks with Hydrazone Linkages. Journal of the American Chemical Society, 133, 11478-11481.
https://doi.org/10.1021/ja204728y
[39]  Wang, L., Sun, J., Deng, M., et al. (2023) Understanding Photocatalytic Hydrogen Peroxide Production in Pure Water for Benzothiadiazole-Based Covalent Organic Frameworks. Catalysis Science & Technology, 13, 6463-6471.
https://doi.org/10.1039/D3CY01175E
[40]  Chai, S., Chen, X., Zhang, X., et al. (2022) Rational Design of Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Peroxide Production. Environmental Science: Nano, 9, 2464-2469.
https://doi.org/10.1039/D2EN00135G
[41]  Qin, C., Wu, X., Tang, L., et al. (2023) Dual Donor-Acceptor Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis. Nature Communications, 14, Article No. 5238.
https://doi.org/10.1038/s41467-023-40991-7
[42]  Liu, M., He, P., Gong, H., et al. (2024) Benzotrithiophene-Based Covalent Organic Frameworks as Efficient Catalysts for Artificial Photosynthesis of H2O2 in Pure Water. Chemical Engineering Journal, 482, Article ID: 148922.
https://doi.org/10.1016/j.cej.2024.148922
[43]  Xia, X., Feng, J., Zhong, Z., et al. (2023) Reconstruction of D-Π-a Polymer Accelerating Photocatalytic Degradation of BPA and Production of H2O2. Advanced Functional Materials, 23, Article No. 11978.
https://doi.org/10.1002/adfm.202311987
[44]  Shang, Q., Liu, Y., Ai, J., et al. (2023) Embedding Au Nanoclusters into the Pores of Carboxylated COF for Efficient Photocatalytic Production of Hydrogen Peroxide. Journal of Materials Chemistry A, 11, 21109-21122.
https://doi.org/10.1039/D3TA03966H
[45]  He, Y., Zhao, J., Sham, Y.T., et al. (2023) Efficient Hydrogen Peroxide Photosynthesis over CDS/COF for Water Disinfection: The S-Scheme Pathway, Oxygen Adsorption, and Reactor Design. ACS Sustainable Chemistry & Engineering, 49, 17552-17563.
https://doi.org/10.1021/acssuschemeng.3c06421
[46]  Yang, Y., Liu, J., Gu, M., et al. (2023) Bifunctional TiO2/COF S-Scheme Photocatalyst with Enhanced H2O2 Production and Furoic Acid Synthesis Mechanism. Applied Catalysis B: Environmental, 333, Article ID: 122780.
https://doi.org/10.1016/j.apcatb.2023.122780
[47]  Chen, H., Gao, S., Huang, G., et al. (2023) Built-In Electric Field Mediated S-Scheme Charge Migration in COF/In2S3 Heterojunction for Boosting H2O2 Photosynthesis and Sterilization. Applied Catalysis B: Environmental, 343, Article ID: 123545.
https://doi.org/10.1016/j.apcatb.2023.123545
[48]  Zhang, H., Liu, J., Zhang, Y., et al. (2023) Biobr/COF S-Scheme Photocatalyst for H2O2 Production via Concerted Two-Electron Pathway. Journal of Materials Science & Technology, 166, 241-249.
https://doi.org/10.1016/j.jmst.2023.05.030
[49]  Li, X., Chen, D., Li, N., et al. (2023) Built-In Electric Field and Oxygen Absorption Synergistically Optimized an Organic/Inorganic Heterojunction for High-Efficiency Photocatalytic Hydrogen Peroxide Production. Journal of Colloid and Interface Science, 648, 664-673.
https://doi.org/10.1016/j.jcis.2023.06.062
[50]  Yu, G., Li, C., Li, D., et al. (2021) Towards High-Performance Resistive Switching Behavior through Embedding a D-A System into 2D Imine-Linked Covalent Organic Frameworks. Angewandte Chemie, 60, 27135-27143.
https://doi.org/10.1002/anie.202112924
[51]  Li, W., Huang, X., Zeng, T., et al. (2020) Thiazolo[5,4-d]thiazole-Based Donor-Acceptor Covalent Organic Framework for Sunlight-Driven Hydrogen Evolution. Angewandte Chemie International Edition, 60, 1869-1874.
https://doi.org/10.1002/anie.202014408
[52]  Geng, K., He, T., Liu, R., et al. (2020) Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews, 16, 8814-8933.
https://doi.org/10.1021/acs.chemrev.9b00550
[53]  Fu, S., Jin, E., Hanayama, H., et al. (2022) Outstanding Charge Mobility by Band Transport in Two-Dimensional Semiconducting Covalent Organic Frameworks. Journal of the American Chemical Society, 144, 7489-7496.
https://doi.org/10.1021/jacs.2c02408
[54]  Hu, H., Tao, Y.-J., Wang, D., et al. (2022) Rational Modification of Hydroxy-Functionalized Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Peroxide Evolution. Journal of Colloid and Interface Science, 629, 750-762.
https://doi.org/10.1016/j.jcis.2022.09.111
[55]  Li, C.J., Xie, H., Zhou, S., et al. (2024) The Structure-Activity Relationship for the Electron-Donating Functional Groups in Hydrazone-Linked COFS and Their Photocatalytic H2O2 Production. Materials Research Bulletin, 173, Article ID: 112697.
https://doi.org/10.1016/j.materresbull.2024.112697
[56]  Luo, Y., Liu, C., Liu, J., et al. (2024) Anthraquinone Centers Modified Covalent Organic Frameworks for Boosted Photocatalytic O2-to-H2O2 Synthesis: Inhibiting the In-Situ Decomposition of H2O2. Chemical Engineering Journal, 481, Article ID: 148494.
https://doi.org/10.1016/j.cej.2023.148494
[57]  Yang, Y., Kang, J., Li, Y., et al. (2022) Enhanced Photocatalytic Hydrogen Peroxide Production Activity of Imine-Linked Covalent Organic Frameworks via Modification with Functional Groups. New Journal of Chemistry, 46, 21605-21614.
https://doi.org/10.1039/D2NJ03744K

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413