全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

光纤可穿戴传感器在人体健康监测领域发展研究综述
A Review of Research on the Development of Fibre-Optic Wearable Sensors for Human Health Monitoring

DOI: 10.12677/jsta.2024.122026, PP. 228-239

Keywords: 可穿戴传感设备,光纤传感器,远程健康监测,医疗康复
Wearable Devices
, Fibre-Optic Sensors, Remote Health Monitoring, Medical Rehabilitation

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着健康意识和医疗服务水平的不断提高,可穿戴传感设备正在以极快的速度发展。特别是近年来,可穿戴技术与各种高科技设备融合的产品,极大地改善了世界各地人们的生活,减缓了人们的老化进程。随着高科技设备和可穿戴技术的结合,光纤传感器已成为可穿戴领域的一股新兴力量,对远程健康监测和医疗康复的发展产生了深远的影响。本文综述了可穿戴光纤传感器的类型,分析了它们的一些制造细节和优劣势,概述了可穿戴光纤传感器在人体健康监测中的实际应用,从呼吸和心率、运动感知以及人机交互应用方面进行了总结,最后对未来光学可穿戴设备的研究前景和新兴领域面临的挑战做出了展望。
Wearable sensing devices are developing at an extremely fast pace with increasing health awareness and medical services. Especially in recent years, products combining wearable technology and various high-tech devices have greatly improved the lives of people around the world and slowed down the aging process. With the combination of high-tech devices and wearable technology, fibre-optic sensors have become an emerging power in the wearable field, which has a profound impact on the development of remote health monitoring and medical rehabilitation. This paper reviews the types of wearable fibre-optic sensors, analyses some of their manufacturing details along with their advantages and disadvantages, outlines the practical applications of wearable fibre-optic sensors in human health monitoring in terms of respiration and heart rate, motion sensing and human-computer interaction applications. Finally, it provides an insight into the future prospects of research on optical wearable devices and the challenges facing the emerging field.

References

[1]  Lutz, W., Sanderson, W. and Scherbov, S. (2008) The Coming Acceleration of Global Population Ageing. Nature, 451, 716-719.
https://doi.org/10.1038/nature06516
[2]  McGillion, M.H., Allan, K., Ross-Howe, S., Jiang, W., Graham, M., Marcucci, M., Johnson, A., Scott, T., Ouellette, C., Kocetkov, D., Lounsbury, J., Bird, M., Harsha, P., Sanchez, K., Harvey, V., Vincent, J., Borges, F.K., Carroll, S.L., Peter, E., Patel, A., Bergh, S. and Devereaux, P.J. (2022) Beyond Wellness Monitoring: Continuous Multiparameter Remote Automated Monitoring of Patients. Canadian Journal of Cardiology, 38, 267-278.
https://doi.org/10.1016/j.cjca.2021.10.011
[3]  Cowie, M.R. and Lam, C.S.P. (2021) Remote Monitoring and Digital Health Tools in CVD Management. Nature Reviews Cardiology, 18, 457-458.
https://doi.org/10.1038/s41569-021-00548-x
[4]  Fang, H., Guo, J. and Wu, H. (2022) Wearable Triboelectric Devices for Haptic Perception and VR/AR Applications. Nano Energy, 96, Article ID: 107112.
https://doi.org/10.1016/j.nanoen.2022.107112
[5]  Pan, D., Hu, J., Wang, B., Xia, X., Cheng, Y., Wang, C.H. and Lu, Y. (2023) Biomimetic Wearable Sensors: Emerging Combination of Intelligence and Electronics. Advanced Science, 11, e2303264.
https://doi.org/10.1002/advs.202303264
[6]  Rovera, A., Tancau, A., Boetti, N., Dalla Vedova, M.D.L., Maggiore, P. and Janner, D. (2023) Fiber Optic Sensors for Harsh and High Radiation Environments in Aerospace Applications. Sensors, 23, Article 2512.
https://doi.org/10.3390/s23052512
[7]  Min, R., Liu, Z., Pereira, L., Yang, C., Sui, Q. and Marques, C. (2021) Optical Fiber Sensing for Marine Environment and Marine Structural Health Monitoring: A Review. Optics & Laser Technology, 140, Article ID: 107082.
https://doi.org/10.1016/j.optlastec.2021.107082
[8]  He, T., Wang, W., He, B.G. and Chen, J. (2023) Review on Optical Fiber Sensors for Hazardous-Gas Monitoring in Mines and Tunnels. IEEE Transactions on Instrumentation and Measurement, 72, 1-22.
https://doi.org/10.1109/TIM.2023.3273691
[9]  Sadani, K., Nag, P., Thian, X.Y. and Mukherji, S. (2022) Enzymatic Optical Biosensors for Healthcare Applications. Biosensors and Bioelectronics: X, 12, Article ID: 100278.
https://doi.org/10.1016/j.biosx.2022.100278
[10]  Luo, R., Li, G., Fan, S. and Safara, F. (2021) Location-Based Explosion Detection in Wireless Optical Pressure Sensor Networks Using Bat Optimization Algorithm. Wireless Personal Communications, 127, 845-868.
https://doi.org/10.1007/s11277-021-08442-y
[11]  De Tommasi, F., Massaroni, C., Caponero, M.A., Carassiti, M., Schena, E. and Lo Presti, D. (2023) FBG-Based Mattress for Heart Rate Monitoring in Different Breathing Conditions. IEEE Sensors Journal, 23, 14114-14122.
https://doi.org/10.1109/JSEN.2023.3275323
[12]  Ushakov, N., Markvart, A., Kulik, D. and Liokumovich, L. (2021) Comparison of Pulse Wave Signal Monitoring Techniques with Different Fiber-Optic Interferometric Sensing Elements. Photonics, 8, Article 142.
https://doi.org/10.3390/photonics8050142
[13]  Wang, X., Jiang, Y., Xu, S., Liu, H. and Li, X. (2022) Fiber Bragg Grating-Based Smart Garment for Monitoring Human Body Temperature. Sensors, 22, Article 4252.
https://doi.org/10.3390/s22114252
[14]  Wang, H., Zheng, J., Nie, Q., Zhao, C., Wang, Z., Kumar, S., Marques, C., Min, R. and Hu, X. (2023) SleepSense: Smart Pillow with Pressure-Sensitive FBG-Embedded Silicone Buttons. IEEE Sensors Journal, 23, 19324-19331.
https://doi.org/10.1109/JSEN.2023.3295114
[15]  Mahmud, S., Khandakar, A., Chowdhury, M.E.H., AbdulMoniem, M., Bin Ibne Reaz, M., Bin Mahbub, Z., Sadasivuni, K.K., Murugappan, M. and Alhatou, M. (2023) Fiber Bragg Gratings Based Smart Insole to Measure Plantar Pressure and Temperature. Sensors and Actuators A: Physical, 350, Article ID: 114092.
https://doi.org/10.1016/j.sna.2022.114092
[16]  Min, R., Hu, X., Pereira, L., Simone Soares, M., Silva, L.C.B., Wang, G., Martins, L., Qu, H., Antunes, P., Marques, C. and Li, X. (2022) Polymer Optical Fiber for Monitoring Human Physiological and Body Function: A Comprehensive Review on Mechanisms, Materials, and Applications. Optics & Laser Technology, 147, Article ID: 107626.
https://doi.org/10.1016/j.optlastec.2021.107626
[17]  Guo, J., Yang, C., Dai, Q. and Kong, L. (2019) Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. Sensors, 19, Article 3771.
https://doi.org/10.3390/s19173771
[18]  Chen, J., Teng, C., Kuang, R., Wang, Z., Yao, Y., Ortega, B., Marques, C., Li, X. and Min, R. (2023) Plastic Optical Fiber Integrated with Smartphone for Gait Monitoring. IEEE Sensors Journal, 23, 18207-18218.
https://doi.org/10.1109/JSEN.2023.3291173
[19]  Ahn, D., Park, Y.J., Shin, J.D., Lee, J. and Park, J. (2018) Plastic Optical Fiber Respiration Sensor Based on In-Fiber Microholes. Microwave and Optical Technology Letters, 61, 120-124.
https://doi.org/10.1002/mop.31524
[20]  Qi, Y., Cong, B., Liu, Z., Gong, C., Li, F., Hu, T. and Liu, Y. (2021) All-Fiber Sensitivity-Enhanced Pressure Sensor Based on Sagnac and F-P Interferometer. Optik, 243, Article ID: 167359.
https://doi.org/10.1016/j.ijleo.2021.167359
[21]  Zha, B., Wang, Z., Li, L., Hu, X., Ortega, B., Li, X. and Min, R. (2023) Wearable Cardiorespiratory Monitoring with Stretchable Elastomer Optical Fiber. Biomedical Optics Express, 14, 2260-2275.
https://doi.org/10.1364/BOE.490034
[22]  Li, L., Yang, C., Wang, Z., Xiao, K. and Min, R. (2024) Stretchable Polymer Optical Fiber Embedded in the Mattress for Respiratory and Heart Rate Monitoring. Optics & Laser Technology, 171, Article ID: 110356.
https://doi.org/10.1016/j.optlastec.2023.110356
[23]  Leal-Junior, A.G., Díaz, C.R., Leit?o, C., Pontes, M.J., Marques, C. and Frizera, A. (2019) Polymer Optical Fiber-Based Sensor for Simultaneous Measurement of Breath and Heart Rate under Dynamic Movements. Optics & Laser Technology, 109, 429-436.
https://doi.org/10.1016/j.optlastec.2018.08.036
[24]  Shen, L., Wang, Z., Xiao, K., Teng, C., Kumar, S., Li, X. and Min, R. (2023) WaveFlex Sensor: Advancing Wearable Cardiorespiratory Monitoring with Flexible Wave-Shaped Polymer Optical Fiber. IEEE Journal of Selected Topics in Quantum Electronics, 29, 1-8.
https://doi.org/10.1109/JSTQE.2023.3235723
[25]  De Tommasi, F., Presti, D.L., Caponero, M.A., Carassiti, M., Schena, E. and Massaroni, C. (2023) Smart Mattress Based on Multipoint Fiber Bragg Gratings for Respiratory Rate Monitoring. IEEE Transactions on Instrumentation and Measurement, 72, 1-10.
https://doi.org/10.1109/TIM.2022.3232615
[26]  Aitkulov, A. and Tosi, D. (2019) Optical Fiber Sensor Based on Plastic Optical Fiber and Smartphone for Measurement of the Breathing Rate. IEEE Sensors Journal, 19, 3282-3287.
https://doi.org/10.1109/JSEN.2019.2894834
[27]  Tavares, C., Leitao, C., Lo Presti, D., Domingues, M.F., Alberto, N., Silva, H. and Antunes, P. (2022) Respiratory and Heart Rate Monitoring Using an FBG 3D-Printed Wearable System. Biomedical Optics Express, 13, 2299-2311.
https://doi.org/10.1364/BOE.452115
[28]  Han, P., Li, L., Zhang, H., Guan, L., Marques, C., Savovi?, S., Ortega, B., Min, R. and Li, X. (2021) Low-Cost Plastic Optical Fiber Sensor Embedded in Mattress for Sleep Performance Monitoring. Optical Fiber Technology, 64, Article ID: 102541.
https://doi.org/10.1016/j.yofte.2021.102541
[29]  Kuang, R., Ye, Y., Chen, Z., He, R., Savovi?, I., Djordjevich, A., Savovi?, S., Ortega, B., Marques, C., Li, X. and Min, R. (2022) Low-Cost Plastic Optical Fiber Integrated with Smartphone for Human Physiological Monitoring. Optical Fiber Technology, 71, Article ID: 102947.
https://doi.org/10.1016/j.yofte.2022.102947
[30]  Lo Presti, D., Santucci, F., Massaroni, C., Formica, D., Setola, R. and Schena, E. (2021) A Multi-Point Heart Rate Monitoring Using a Soft Wearable System Based on Fiber Optic Technology. Scientific Reports, 11, Article No. 21162.
https://doi.org/10.1038/s41598-021-00574-2
[31]  Li, L., He, R., Soares, M.S., Savovic, S., Hu, X., Marques, C., Min, R. and Li, X. (2021) Embedded FBG-Based Sensor for Joint Movement Monitoring. IEEE Sensors Journal, 21, 26793-26798.
https://doi.org/10.1109/JSEN.2021.3120995
[32]  Guo, J., Zhao, K., Zhou, B., Ning, W., Jiang, K., Yang, C., Kong, L. and Dai, Q. (2019) Wearable and Skin-Mountable Fiber-Optic Strain Sensors Interrogated by a Free-Running, Dual-Comb Fiber Laser. Advanced Optical Materials, 7, Article ID: 1900086.
https://doi.org/10.1002/adom.201900086
[33]  Lo Presti, D., Carnevale, A., D’Abbraccio, J., Massari, L., Massaroni, C., Sabbadini, R., Zaltieri, M., Di Tocco, J., Bravi, M., Miccinilli, S., Sterzi, S., Longo, U.G., Denaro, V., Caponero, M.A., Formica, D., Oddo, C.M. and Schena, E. (2020) A Multi-Parametric Wearable System to Monitor Neck Movements and Respiratory Frequency of Computer Workers. Sensors, 20, Article 536.
https://doi.org/10.3390/s20020536
[34]  Cheng-Yu, H., Ahmed Abro, Z., Yi-Fan, Z. and Ahmed Lakho, R. (2019) An FBG-Based Smart Wearable Ring Fabricated Using FDM for Monitoring Body Joint Motion. Journal of Industrial Textiles, 50, 1660-1673.
https://doi.org/10.1177/1528083719870204
[35]  Abro, Z.A., Zhang, Y.F., Hong, C.Y., Lakho, R.A. and Chen, N.L. (2018) Development of A Smart Garment for Monitoring Body Postures Based on FBG and Flex Sensing Technologies. Sensors and Actuators A: Physical, 272, 153-160.
https://doi.org/10.1016/j.sna.2018.01.052
[36]  Zaltieri, M., Lo Presti, D., Bravi, M., Caponero, M.A., Sterzi, S., Schena, E. and Massaroni, C. (2023) Assessment of a Multi-Sensor FBG-Based Wearable System in Sitting Postures Recognition and Respiratory Rate Evaluation of Office Workers. IEEE Transactions on Biomedical Engineering, 70, 1673-1682.
https://doi.org/10.1109/TBME.2022.3225065
[37]  Abro, Z.A., Hong, C., Zhang, Y., Siddiqui, M.Q., Rehan Abbasi, A.M., Abro, Z. and Bin Tariq, S.Q. (2021) Development of FBG Pressure Sensors Using FDM Technique for Monitoring Sleeping Postures. Sensors and Actuators A: Physical, 331, Article ID: 112921.
https://doi.org/10.1016/j.sna.2021.112921
[38]  Yu, H., Zheng, D., Liu, Y., Chen, S., Wang, X. and Peng, W. (2022) Data Glove with Self-Compensation Mechanism Based on High-Sensitive Elastic Fiber-Optic Sensor. Polymers, 15, Article 100.
https://doi.org/10.3390/polym15010100
[39]  Wang, S., Wang, X., Wang, S., Yu, W., Yu, L., Hou, L., Tang, Y., Zhang, Z., Yao, N., Cao, C., Dong, H., Zhang, L. and Bao, H. (2023) Optical-Nanofiber-Enabled Gesture-Recognition Wristband for Human-Machine Interaction with the Assistance of Machine Learning. Advanced Intelligent Systems, 5, Article ID: 2200412.
https://doi.org/10.1002/aisy.202200412
[40]  Li, J., Liu, J., Li, C., Zhang, H. and Li, Y. (2020) Wearable Wrist Movement Monitoring Using Dual Surface-Treated Plastic Optical Fibers. Materials, 13, Article 3291.
https://doi.org/10.3390/ma13153291
[41]  Rao, H., Luo, B., Wu, D., Yi, P., Chen, F., Shi, S., Zou, X., Chen, Y. and Zhao, M. (2023) Study on the Design and Performance of a Glove Based on the FBG Array for Hand Posture Sensing. Sensors, 23, Article 8495.
https://doi.org/10.3390/s23208495
[42]  Li, T., Wang, Q., Su, Y., Qiao, F., Pei, Q., Li, X., Tan, Y. and Zhou, Z. (2023) AI-Assisted Disease Monitoring Using Stretchable Polymer-Based Sensors. ACS Applied Materials & Interfaces, 15, 30924-30934.
https://doi.org/10.1021/acsami.3c01970
[43]  Zhang, Z. and Zhang, L. (2024) Packaged Elastomeric Optical Fiber Sensors for Healthcare Monitoring and Human-Machine Interaction. Advanced Materials Technologies, 9, Article ID: 2301415.
https://doi.org/10.1002/admt.202301415

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413