全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Efficiency of Botanical and Chemical Pesticides on the Control of Field Insect Pests under Cowpea Production

DOI: 10.4236/ajps.2024.153015, PP. 203-221

Keywords: Cowpea, Pest Management, Botanical Solutions, Profenofos, Sustainability

Full-Text   Cite this paper   Add to My Lib

Abstract:

The pulse cowpea [Vigna unguiculata (L.) Walp] holds a significant agricultural position in Uganda, ranking fourth among legume crops, following common beans, groundnuts, and soybeans. Known for its versatility, cowpeas are consumable at various developmental stages, from early seedling to maturity. However, the crop faces persistent pest challenges at each stage, leading to substantial yield losses. In Uganda, chemical insecticides are the primary pest control means, but their increased and excessive use raises environmental, health, and economic concerns. This has prompted a quest for alternative and sustainable solutions, prompting an exploration of botanical insecticides. This study, conducted at Makerere University Agricultural Research Institute (MUARIK), aimed to evaluate the effectiveness of three selected botanical insecticides versus four established chemical insecticides for managing cowpea insect pests under field conditions. The treatments included: Carbofuran, Cypermethrin 10% EC, Dimethoate, Pestwin, Pyrethrum ewc , Pyrethrum 5ew, Profenofos 40% Cypermethrin 4% EC mix, and Untreated, arranged in a randomized complete block design with three replications. The significant pests studied were aphids, thrips, pod-sucking bugs, and legume pod borer. Results indicated substantial impacts of the treatments on pest infestation, with Profenofos 40% Cypermethrin 4% EC being the most effective against most pests. The plant parameter, plant height, was significantly affected by treatments in 2016B, while the number of pods was impacted in 2017A. Pestwin, a botanical insecticide blend (containing Azadirachtin indica, Pongamia pinnata, and Ricinus communis extracts) demonstrated superior efficacy against cowpea aphids. Moreover, it positively influenced plant height, number of pods, and pod biomass, surpassing many chemical insecticides. Pestwin’s environmental friendliness positions it as a potential contributor to reducing environmental pollution, making it a promising candidate for inclusion in IPM programs. Overall, the study underscores the importance of exploring botanical alternatives to chemical insecticides for sustainable pest management in cowpea cultivation.

References

[1]  Affrifah, N.S., Phillips, R.D. and Saalia, F.K. (2022) Cowpeas: Nutritional Profile, Processing Methods and Products—A Review. Legume Science, 4, e131.
https://doi.org/10.1002/leg3.131
[2]  Gomes, A., Nhantumbo, N., Ferreira-Pinto, M., Massinga, R., Ramalho, J.C. and Ribeiro-Barros, A. (2019) Breeding Elite Cowpea [Vigna unguiculata (L.) Walp] Varieties for Improved Food Security and Income in Africa: Opportunities and Challenges. In: El-Esawi, M.A., Ed., Legume Crops-Characterization and Breeding for Improved Food Security, IntechOpen, London, 626-640.
[3]  Nualsri, C., Potarot, S., Jansod, J., Milošević, D., Wuttiwong, K., Benchasri, S., Maneelert, V., et al. (2012) Evaluation and Utilization of Cowpea (Vigna unguiculata (L.) Walp.) Germplasm for Varietal Improvement of Resistance to Cowpea Aphid (Aphis craccivora Koch.) in Thailand. International Conference on BioScience: Biotechnology and Biodiversity-Step in the Future, The Fourth Joint UNS-PSU Conference, Novi Sad, 18-20 June 2012, 6-18.
[4]  Nyamaizi, S., Tumuhairwe, J., Amayo, R., Tumuhe, C., Tereka, E., Nabirye, D., Obaa, B., et al. (2020) Phosphorus Fertilizer Rating and Rhizobia Inoculation for Improved Productivity of Cowpea in Northern Uganda. American Journal of Plant Sciences, 11, 1505-1519.
https://doi.org/10.4236/ajps.2020.119109
[5]  Oyewale, R. and Bamaiyi, L. (2013) Management of Cowpea Insect Pests. Scholars Academic Journal of Biosciences (SAJB), 1, 217-226.
[6]  Kyebalyenda, T., Nakanwagi, M.J., Sseremba, G., Buteme, R., Kabod, P., Odeke, V., Amayo, R., Runyararo, J., Egeru, A., Falk, T., et al. (2022) Farmers' Selection Cues in Cowpea for Vegetable Use in Eastern Uganda. African Journal of Food, Agriculture, Nutrition and Development, 22, 20197-20214.
https://doi.org/10.18697/ajfand.109.20155
[7]  Mbeyagala, E., Ariko, J., Atimango, A. and Amuge, E. (2021) Yield Stability among Cowpea Genotypes Evaluated in Different Environments in Uganda. Cogent Food & Agriculture, 7, Article ID: 1914368.
https://doi.org/10.1080/23311932.2021.1914368
[8]  Orawu, M., Obuo, J., Omadi, R., et al. (2015) Distribution and Detection of Cowpea Viruses Infecting Cowpea in Uganda. American Journal of Plant Sciences, 6, 574-581.
https://doi.org/10.4236/ajps.2015.65062
[9]  Ronner, E. and Giller, K.E. (2019) Background Information on Agronomy, Farming Systems and Ongoing Projects on Grain Legumes in Uganda. Gates Open Research, 3, Article No. 497.
[10]  Okonya, J.S. and Maass, B.L. (2014) Protein and Iron Composition of Cowpea Leaves: An Evaluation of Six Cowpea Varieties Grown in Eastern Africa. African Journal of Food, Agriculture, Nutrition and Development, 14, 2129-2140.
https://doi.org/10.18697/ajfand.65.13645
[11]  Ngalamu, T., Odra, J. and Tongun, N. (2015) Cowpea Production Handbook. IFS/AGRA, Afristar Publishing House, Juba.
[12]  Abebe, B.K. and Alemayehu, M.T. (2022) A Review of the Nutritional Use of Cowpea [Vigna unguiculata (L.) Walp] for Human and Animal Diets. Journal of Agriculture and Food Research, 10, Article ID: 100383.
https://doi.org/10.1016/j.jafr.2022.100383
[13]  Carvalho, M., Carnide, V., Sobreira, C., Castro, I., Coutinho, J., Barros, A. and Rosa, E. (2022) Cowpea Immature Pods and Grains Evaluation: An Opportunity for Different Food Sources. Plants, 11, Article No. 2079.
https://doi.org/10.3390/plants11162079
[14]  Gerrano, A.S., Adebola, P.O., van Rensburg, W.S.J. and Venter, S.L. (2015) Genetic Variability and Heritability Estimates of Nutritional Composition in the Leaves of Selected Cowpea Genotypes [Vigna unguiculata (L.) Walp.]. HortScience, 50, 1435-1440.
https://doi.org/10.21273/HORTSCI.50.10.1435
[15]  Gerrano, A.S., van Rensburg, W.S.J. and Adebola, P.O. (2017) Nutritional Composition of Immature Pods in Selected Cowpea [Vigna unguiculata (L.) Walp.] Genotypes in South Africa. Australian Journal of Crop Science, 11, 134-141.
https://doi.org/10.21475/ajcs.17.11.02.p72
[16]  Chikwendu, J., Igbatim, A. and Obizoba, I. (2014) Chemical Composition of Processed Cowpea Tender Leaves and Husks. International Journal of Scientific and Research Publications, 4, 1-5.
[17]  Asio, M., Osiru, D. and Adipala, E. (2005) Multilocational Evaluation of Selected Local and Improved Cowpea Lines in Uganda. African Crop Science Journal, 13, 239-247.
[18]  Ddamulira, G., Santos, C.A., Alanyo, M., Ramathani, I. and Maphosa, M. (2017) Maturity, Protein Content and Yield Stability of Cowpea in Uganda. South African Journal of Plant and Soil, 34, 255-261.
https://doi.org/10.1080/02571862.2016.1274919
[19]  Karungi, J., Adipala, E., Kyamanywa, S., Ogenga-Latigo, M., Oyobo, N. and Jackai, L. (2000) Pest Management in Cowpea. Part 2. Integrating Planting Time, Plant Density and Insecticide Application for Management of Cowpea Field Insect Pests in Eastern Uganda. Crop Protection, 19, 237-245.
https://doi.org/10.1016/S0261-2194(00)00014-4
[20]  Agbahoungba, S., Karungi, J., Badji, A., Sadik, K., Gibson, P., Edema, R., Assogbadjo, A.E. and Rubaihayo, P.R. (2018) Inheritance of Cowpea Resistance to Flower Thrips in Uganda Germplasm. Journal of Plant Breeding and Crop Science, 10, 21-32.
https://doi.org/10.5897/JPBCS2017.0698
[21]  Togola, A., Boukar, O., Belko, N., Chamarthi, S., Fatokun, C., Tamo, M. and Oigiangbe, N. (2017) Host Plant Resistance to Insect Pests of Cowpea [Vigna unguiculata (L.) Walp.]: Achievements and Future Prospects. Euphytica, 213, Article No. 239.
https://doi.org/10.1007/s10681-017-2030-1
[22]  Kusi, F., Nboyine, J., Abudulai, M., Seidu, A., Agyare, Y., Sugri, I., Zakaria, M., Owusu, R., Nutsugah, S. and Asamoah, L. (2019) Cultivar and Insecticide Spraying Time Effects on Cowpea Insect Pests and Grain Yield in Northern Ghana. Annals of Agricultural Sciences, 64, 121-127.
https://doi.org/10.1016/j.aoas.2019.03.001
[23]  Kirinya, J., Taylor, D., Kyamanywa, S., Karungi, J., Erbaugh, J. and Bonabana-Wabbi, J. (2013) Adoption of Integrated Pest Management (IPM) Technologies in Uganda: Review of Economic Studies. International Journal of Advanced Research, 1, 401-420.
[24]  Kityo, R., Odoi, J., Ozimati, A., Dramadri, I., Agaba, R., Ongom, P., Nampala, P., Edema, R., Karungi, J., Gibson, P., et al. (2021) New Sources and Stability of Resistance to Aphids in Cowpea Germplasm across Locations in Uganda. African Crop Science Journal, 29, 209-228.
https://doi.org/10.4314/acsj.v29i2.3
[25]  Karungi, J., Kyamanywa, S., Adipala, E. and Erbaugh, M. (2011) Pesticide Utilisation, Regulation and Future Prospects in Small Scale Horticultural Crop Production Systems in a Developing Country. In: Stoytcheva, M., Ed., Pesticides in the Modern WorldPesticides Use and Management, IntechOpen, London, 20-34.
https://doi.org/10.5772/17170
[26]  Ngabirano, H. and Birungi, G. (2022) Pesticide Residues in Vegetables Produced in Rural South-Western Uganda. Food Chemistry, 370, Article ID: 130972.
https://doi.org/10.1016/j.foodchem.2021.130972
[27]  Ugwu, J.A. (2020) Insecticidal Activity of Some Botanical Extracts against Legume Flower Thrips and Legume Pod Borer on Cowpea Vigna unguiculata L. Walp. The Journal of Basic and Applied Zoology, 81, Article No. 13.
https://doi.org/10.1186/s41936-020-00153-3
[28]  Opolot, H., Agona, A., Kyamanywa, S., Mbata, G. and Adipala, E. (2006) Integrated Field Management of Cowpea Pests Using Selected Synthetic and Botanical Pesticides. Crop Protection, 25, 1145-1152.
https://doi.org/10.1016/j.cropro.2005.03.019
[29]  Rabo, M., Batieno, T.B.J., Traoré-Barro, A., Traoré, S., Coulibaly, O., Toguyeni, A., Kaboré-Zoungrana, C. and Traoré, O. (2023) Protein Profiles of Pod Borer Maruca Resistant Transgenic Cowpea. American Journal of Plant Sciences, 14, 1453-1463.
https://doi.org/10.4236/ajps.2023.1412098
[30]  R Core Team (2023) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
https://www.R-project.org/
[31]  Bates, D., Mächler, M., Bolker, B. and Walker, S. (2015) Fitting Linear Mixed-Effects Models Using Lme4. Journal of Statistical Software, 67, 1-48.
https://doi.org/10.18637/jss.v067.i01
[32]  Entila, F., Han, X., Mine, A., Schulze-Lefert, P. and Tsuda, K. (2024) Commensal Lifestyle Regulated by a Negative Feedback Loop between Arabidopsis ROS and the Bacterial T2SS. Nature Communications, 15, Article No. 456.
[33]  Kuznetsova, A., Brockhoff, P.B. and Christensen, R.H.B. (2017) lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82, 1-26.
https://doi.org/10.18637/jss.v082.i13
[34]  Hothorn, T., Bretz, F. and Westfall, P. (2008) Simultaneous Inference in General Parametric Models. Biometrical Journal, 50, 346-363.
https://doi.org/10.1002/bimj.200810425
[35]  Nampala, P., Ogenga-Latigo, M., Kyamanywa, S., Adipala, E., Karungi, J., Oyobo, N., Obuo, J. and Jackai, L. (1999) Integrated Management of Major Field Pests of Cowpea in Eastern Uganda. African Crop Science Journal, 7, 479-486.
https://doi.org/10.4314/acsj.v7i4.27741
[36]  Naik, V.C.B., Narode, M.K., Kumbhare, S., Ghongade, D.S., Madhu, T., Murthy, J., Gokte-Narkhedkar, N. and Prasad, Y. (2023) Efficacy of Novel Insecticides and Their Combinations against Pink Bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) in Cotton. International Journal of Tropical Insect Science, 43, 397-407.
https://doi.org/10.1007/s42690-022-00939-8
[37]  Yaligar, R. (2021) Field Evaluation of Profenofos 40% Cypermethrin 4% (44%) Ec against Lepidopteran Pests of Rice.
[38]  Kumar, A. and Yadav, U. (2023) Efficacy of Different Plant Products against Gram Pod Borer [Helicoverpa armigera (Hubner)] on Chickpea, Cicer arietinum (L.).
[39]  Das, S.K. (2014) Scope and Relevance of Using Pesticide Mixtures in Crop Protection: A Critical Review. International Journal of Environmental Science and Toxicology, 2, 119-123.
[40]  Ward, A., Morse, S., Denholm, I., Thompson, R. and McNamara, N. (2002) Foliar Insect Pest Management on Cowpea (Vigna unguiculata Walpers) in Simulated Varietal Mixtures: II. Pest Resistance Management Implications. Field Crops Research, 79, 67-80.
https://doi.org/10.1016/S0378-4290(02)00137-5
[41]  Ahamd, S., Hera, Z., Hanif, M. and Syed, A. (2020) Effects of Carbosulfan on the Biology of Bird Cherry Oat Aphid. Biological and Clinical Sciences Research Journal, 2020, 14.
https://doi.org/10.54112/bcsrj.v2020i1.14
[42]  Patil, S., Sridevi, D., Babu, T.R. and Pushpavathi, B. (2018) Field Efficacy of Selected Insecticides against Cowpea Aphid, Aphis craccivora (Koch). Journal of Entomology and Zoology Studies, 6, 668-672.
[43]  Van Scoy, A., Pennell, A. and Zhang, X. (2016) Environmental Fate and Toxicology of Dimethoate. In: de Voogt, W.P., Ed., Reviews of Environmental Contamination and Toxicology, Volume 237, Springer, Berlin, 53-70.
https://doi.org/10.1007/978-3-319-23573-8_3
[44]  Sajay, S., Sreekumar, K., Varma, C.Y., Ramesha, B., et al. (2020) Pongamia Oil Soap for Managing the Cowpea Aphid, Aphis craccivora Koch. Entomon, 45, 219-224.
https://doi.org/10.33307/entomon.v45i3.553
[45]  Tran, D.H., Le, K.P., Tran, H.D.T. and Ueno, T. (2016) Control Efficacy of Pongam (Pongamia pinnata L.) Leaf Extract against the Turnip Aphid Lipaphis pseudobrassicae (Davis) (Hemiptera: Aphididae). Faculty of Agriculture, Kyushu University, Kyushu.
https://doi.org/10.5109/1564095
[46]  Kilani-Morakchi, S., Morakchi-Goudjil, H. and Sifi, K. (2021) Azadirachtin-Based Insecticide: Overview, Risk Assessments, and Future Directions. Frontiers in Agronomy, 3, Article ID: 676208.
https://doi.org/10.3389/fagro.2021.676208
[47]  Hoa, T.D., Masami, T. and Takatoshi, U. (2017) Efficacy of the Extract from Pongam Leaves (Pongamia pinnata L.) against Spodoptera exigua (Hübner) and Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Journal of the Faculty of Agriculture, 62, 439-443.
https://doi.org/10.5109/1854018
[48]  Singh, A., Bhatt, G., Gujre, N., Mitra, S., Swaminathan, R., Limaye, A. and Rangan, L. (2021) Karanjin. Phytochemistry, 183, Article ID: 112641.
https://doi.org/10.1016/j.phytochem.2020.112641
[49]  Usharani, K., Naik, D. and Manjunatha, R. (2019) Pongamia pinnata (L.): Composition and Advantages in Agriculture: A Review. Journal of Pharmacognosy and Phytochemistry, 8, 2181-2187.
[50]  Liu, N., Li, M., Gong, Y., Liu, F. and Li, T. (2015) Cytochrome P450s—Their Expression, Regulation, and Role in Insecticide Resistance. Pesticide Biochemistry and Physiology, 120, 77-81.
https://doi.org/10.1016/j.pestbp.2015.01.006
[51]  Solanki, V., Singh, S., Kansara, R., Gandhi, K., Patel, N. and Ahlawat, T. (2021) Persistence, Dissipation and Health Risk Assessment of Combi-Product Profenofos and Cypermethrin in/on Sapota under Sub-Tropical Agro-Climatic Conditions in India. Notulae Scientia Biologicae, 13, 11030-11030.
[52]  Donovan, S., Taggart, M. and Richards, N. (2011) An Overview of the Chemistry, Manufacture, Environmental Fate and Detection of Carbofuran. In: Richards, N., Ed., Carbofuran and Wildlife Poisoning: Global Perspectives and Forensic Approaches, John Wiley & Sons, Inc., Hoboken, 1-18.
https://doi.org/10.1002/9781119998532.ch1
[53]  Silberman, J. and Taylor, A. (2023) Carbamate Toxicity. StatPearls Publishing, St. Petersburg.
[54]  Schasteen, C.S. (2023) Safety of Food and Beverages: Oilseeds, Legumes and Derived Products. Elsevier, Amsterdam.
https://doi.org/10.1016/B978-0-12-822521-9.00159-3
[55]  Hodoșan, C., Gîrd, C.E., Ghica, M.V., Dinu-Pîrvu, C.-E., Nistor, L., Bărbuică, I.S., Marin, Ștefan-C., Mihalache, A. and Popa, L. (2023) Pyrethrins and Pyrethroids: A Comprehensive Review of Natural Occurring Compounds and Their Synthetic Derivatives. Plants, 12, Article No. 4022.
https://doi.org/10.3390/plants12234022
[56]  Aggarwal, P., Jamshed, N., Ekka, M. and Imran, A. (2015) Suicidal Poisoning with Cypermethrin: A Clinical Dilemma in the Emergency Department. Journal of Emergencies, Trauma, and Shock, 8, 123-125.
https://doi.org/10.4103/0974-2700.145424
[57]  Robb, E.L., Regina, A.C. and Baker, M.B. (2023) Organophosphate Toxicity.
[58]  Trang, A. and Khandhar, P.B. (2023) Physiology, Acetylcholinesterase. StatPearls Publishing, St. Petersburg.
[59]  Trang, A. and Khandhar, P.B. (2019) Physiology, Acetylcholinesterase.
[60]  Pestwin Organic Pesticide.
https://bioprotectionportal.com/productdetails/pestwin-organic-pesticide-78785501/?country=ug
[61]  Degani, E., Prasad, M.V.R., Paradkar, A., Pena, R., Soltangheisi, A., Ullah, I., Warr, B. and Tibbett, M. (2022) A Critical Review of Pongamia pinnata Multiple Applications: From Land Remediation and Carbon Sequestration to Socioeconomic Benefits. Journal of Environmental Management, 324, Article ID: 116297.
https://doi.org/10.1016/j.jenvman.2022.116297
[62]  Sousa, N.L., Cabral, G.B., Vieira, P.M., Baldoni, A.B. and Aragão, F.J. (2017) Bio-Detoxification of Ricin in Castor Bean (Ricinus communis L.) Seeds. Scientific Reports, 7, Article No. 15385.
https://doi.org/10.1038/s41598-017-15636-7
[63]  Moshiri, M., Hamid, F. and Etemad, L. (2016) Ricin Toxicity: Clinical and Molecular Aspects. Reports of Biochemistry & Molecular Biology, 4, 60-65.
[64]  Subhash, S., Raghavendra, K., Balodi, R., Deepika and Dubey, N. (2022) Use of Green Chemicals in Pest and Disease Management. In: Chakrabarti, S.K., Sharma, S. and Shah, M.A., Eds., Sustainable Management of Potato Pests and Diseases, Springer, Berlin, 495-524.
https://doi.org/10.1007/978-981-16-7695-6_20
[65]  Norris, E.J., Gross, A.D., Bartholomay, L.C. and Coats, J. (2019) Plant Essential Oils Synergize Various Pyrethroid Insecticides and Antagonize Malathion in Aedes aegypti. Medical and Veterinary Entomology, 33, 453-466.
https://doi.org/10.1111/mve.12380
[66]  Kushwaha, M., Verma, S. and Chatterjee, S. (2016) Profenofos, an Acetylcholinesterase-Inhibiting Organophosphorus Pesticide: A Short Review of Its Usage, Toxicity, and Biodegradation. Journal of Environmental Quality, 45, 1478-1489.
https://doi.org/10.2134/jeq2016.03.0100

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413