全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于CiteSpace近二十年植物叶脉密度研究现在与趋势分析
Research and Trend Analysis of Plant Leaf Vein Density in the Past Two Decades based on CiteSpace

DOI: 10.12677/br.2024.132022, PP. 206-222

Keywords: 叶脉密度,CiteSpace,计量方法,研究现状,研究热点
Leaf Vein Density
, CiteSpace, Bibliometric Approach, Research Status, Research Hotspots

Full-Text   Cite this paper   Add to My Lib

Abstract:

叶脉在植物叶片中具有物质传输的功能,用于供应水分、传输养分和糖以及为叶片提供生物机械支撑,其中叶脉结构通过影响叶片的水分供应状况,进而直接影响植物叶片的光合作用。本研究采用文献计量学方法,对植物叶脉密度相关文献的年发表数量进行了定量分析。研究结果显示了植物叶脉密度研究的基本文献特征、主要智力基础和主要研究力量。同时,揭示了该领域的研究热点和趋势。本研究从文献计量学的角度对植物叶脉密度进行了客观、全面的分析。为相关领域的学者细化研究方向、解决具体科学问题、寻求或建立感兴趣领域的相关合作提供参考。
Leaf veins play a crucial role in plant foliage by facilitating material transport, including water supply, nutrient and sugar transport, and providing biomechanical support. The structure of leaf veins directly affects the water supply of leaves, thereby impacting plant photosynthesis. In this study, a bibliometric approach was employed to quantitatively analyze the publication trends of plant leaf vein density research. The study revealed the fundamental characteristics, major intellectual foundations, and key research contributors in the field of plant leaf vein density. Additionally, it identified research hotspots and trends. This research provides an objective and comprehensive analysis of plant leaf vein density from a bibliometric perspective. It serves as a reference for scholars in related fields to refine their research directions, address specific scientific questions, and seek collaborative opportunities in their areas of interest.

References

[1]  Blonder, B., Both, S., Jodra, M., et al. (2020) Linking Functional Traits to Multiscale Statistics of Leaf Venation Networks. New Phytologist, 228, 1796-1810.
https://doi.org/10.1111/nph.16830
[2]  Roth-Nebelsick, A., Uhl, D., Mosbrugger, V., et al. (2001) Evolution and Function of Leaf Venation Architecture: A Review. Annals of Botany, 87, 553-566.
https://doi.org/10.1006/anbo.2001.1391
[3]  Lawren, S. and Christine, S. (2013) Leaf Venation: Structure, Function, Development, Evolution, Ecology and Applications in the Past, Present and Future. The New Phytologist, 198, 983-1000.
https://doi.org/10.1111/nph.12253
[4]  Ronellenfitsch, H. and Katifori, E. (2019) Phenotypes of Vascular Flow Networks. Physical Review Letters, 123, Article ID: 248101.
https://doi.org/10.1103/PhysRevLett.123.248101
[5]  Blonder, B., Salinas, N., Bentley, L.P., et al. (2018) Structural and Defensive Roles of Angiosperm Leaf Venation Network Reticulation across an Andes-Amazon Elevation Gradient. Journal of Ecology, 106, 1683-1699.
https://doi.org/10.1111/1365-2745.12945
[6]  Ohtsuka, A., Sack, L. and Taneda, H. (2018) Bundle Sheath Lignification Mediates the Linkage of Leaf Hydraulics and Venation. Plant Cell and Environment, 41, 342-353.
https://doi.org/10.1111/pce.13087
[7]  Katifori, E., Szollosi, G.J. and Magnasco, M.O. (2010) Damage and Fluctuations Induce Loops in Optimal Transport Networks. Physical Review Letters, 104, Article ID: 048704.
https://doi.org/10.1103/PhysRevLett.104.048704
[8]  Brodribb, T.J., Bienaime, D. and Marmottant, P. (2016) Revealing Catastrophic Failure of Leaf Networks under Stress. Proceedings of the National Academy of Sciences of the United States of America, 113, 4865-4869.
https://doi.org/10.1073/pnas.1522569113
[9]  Agrawal, A.A. and Konno, K. (2009) Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense against Herbivory. Annual Review of Ecology Evolution and Systematics, 40, 311-331.
https://doi.org/10.1146/annurev.ecolsys.110308.120307
[10]  Givnish, T. (1979) On the Adaptive Significance of Leaf Form. In: Solbrig, O.T., Jain, S., Johnson, G.B., et al., Eds., Topics in Plant Population Biology, Macmillan Education, London, 375-407.
https://doi.org/10.1007/978-1-349-04627-0_17
[11]  John, G.P., Scoffoni, C., Buckley, T.N., et al. (2017) The Anatomical and Compositional Basis of Leaf Mass per Area. Ecology Letters, 20, 412-425.
https://doi.org/10.1111/ele.12739
[12]  熊映杰, 于果, 魏凯璐, 等. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147.
[13]  李乐, 曾辉, 郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7): 691-698.
[14]  孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007(1): 150-165.
[15]  Brodribb, T.J., Feild, T.S. and Jordan, G.J. (2007) Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics. Plant Physiology, 144, 1890-1898.
https://doi.org/10.1104/pp.107.101352
[16]  Peng, G., Xiong, Y., Yin, M., et al. (2022) Leaf Venation Architecture in Relation to Leaf Size across Leaf Habits and Vein Types in Subtropical Woody Plants. Frontiers in Plant Science, 13, Article ID: 873036.
https://doi.org/10.3389/fpls.2022.873036
[17]  Hua, L., He, P., Goldstein, G., et al. (2020) Linking Vein Properties to Leaf Biomechanics across 58 Woody Species from a Subtropical Forest. Plant Biology, 22, 212-220.
https://doi.org/10.1111/plb.13056
[18]  黄俊丽, 马娜娜, 车树刚, 等. 植物叶脉发育的分子机制[J]. 生命科学, 2011, 23(8): 804-811.
[19]  Sack, L. and Scoffoni, C. (2013) Leaf Venation: Structure, Function, Development, Evolution, Ecology and Applications in the Past, Present and Future. New Phytologist, 198, 983-1000.
https://doi.org/10.1111/nph.12253
[20]  Colmer, T.D., Winkel, A. and Pedersen, O. (2011) A Perspective on Underwater Photosynthesis in Submerged Terrestrial Wetland Plants. Aob Plants, 2011, plr030.
https://doi.org/10.1093/aobpla/plr030
[21]  Yan, T., Xue, J., Zhou, Z., et al. (2020) The Trends in Research on the Effects of Biochar on Soil. Sustainability, 12, Article No. 7810.
https://doi.org/10.3390/su12187810
[22]  陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253.
[23]  Zhang, Y., Li, C., Ji, X., et al. (2020) The Knowledge Domain and Emerging Trends in Phytoremediation: A Scientometric Analysis with CiteSpace. Environmental Science and Pollution Research, 27, 15515-15536.
https://doi.org/10.1007/s11356-020-07646-2
[24]  Fang, J., Pan, L., Gu, Q.-X., et al. (2020) Scientometric Analysis of MTOR Signaling Pathway in Liver Disease. Annals of Translational Medicine, 8, Article No. 93.
https://doi.org/10.21037/atm.2019.12.110
[25]  Wang, W. and Lu, C. (2020) Visualization Analysis of Big Data Research Based on Citespace. Soft Computing, 24, 8173-8186.
https://doi.org/10.1007/s00500-019-04384-7
[26]  Xu, Y.-Q. (2020) Digital Innovation Ecosystem: Research Context, Research Hotspot and Research Trends—Knowledge Mapping Analysis Using Citespace. Journal of Electronics and Information Science, 5, 72-80
[27]  Xue, Y. (2021) The Research Status and Prospect of Global Change Ecology in the Past 30 Years Based on CiteSpace. Advances in Environmental Protection, 11, 281-287.
https://doi.org/10.12677/AEP.2021.112029
[28]  Shao, H., Kim, G., Li, Q., et al. (2021) Web of Science-Based Green Infrastructure: A Bibliometric Analysis in CiteSpace. Land, 10, Article No. 711.
https://doi.org/10.3390/land10070711
[29]  Yu, L. (2021) The Scientific Development of Ecosystem Service Values. 2021 7th International Engineering Conference Research & Innovation amid Global Pandemic”, Erbil, 24-25 February 2021, 128-133.
https://doi.org/10.1109/IEC52205.2021.9476088
[30]  张爱霞, 周飞丽, 刘炼, 等. 基于Web of Science和CiteSpace的水稻育种研究热点与前沿分析[J]. 分子植物育种, 2023, 21(15): 5066-5078.
[31]  Mackinlay, J., Hanrahan, P. and Stolte, C. (2007) Show Me: Automatic Presentation for Visual Analysis. IEEE Transactions on Visualization and Computer Graphics, 13, 1137-1144.
https://doi.org/10.1109/TVCG.2007.70594
[32]  Guo, J., Xue, J., Hua, J., et al. (2022) Research Status and Trends of Underwater Photosynthesis. Sustainability, 14, Article No. 4644.
https://doi.org/10.3390/su14084644
[33]  Ding, X. and Yang, Z. (2022) Knowledge Mapping of Platform Research: A Visual Analysis Using VOSviewer and CiteSpace. Electronic Commerce Research, 22, 787-809.
https://doi.org/10.1007/s10660-020-09410-7
[34]  张会择, 赖宇. 基于CiteSpace的医学免疫学实验教学研究现状、热点及发展趋势的可视化分析[J]. 中国免疫学杂志, 2022(9): 1-9.
[35]  Stringer, M.J., Sales-Pardo, M. and Amaral, L.A.N. (2008) Effectiveness of Journal Ranking Schemes as a Tool for Locating Information. PLOS ONE, 3, e1683.
https://doi.org/10.1371/journal.pone.0001683
[36]  Smith, D.R. (2009) A 30-Year Citation Analysis of Bibliometric Trends at the Archives of Environmental Health, 1975-2004. Archives of Environmental & Occupational Health, 64, 43-54.
https://doi.org/10.1080/19338240903293004
[37]  Cohu, C.M., Muller, O., Adams, W.W., et al. (2014) Leaf Anatomical and Photosynthetic Acclimation to Cool Temperature and High Light in Two Winter versus Two Summer Annuals. Physiologia Plantarum, 152, 164-173.
https://doi.org/10.1111/ppl.12154
[38]  Adams, W.W., Stewart, J.J., Cohu, C.M., et al. (2016) Habitat Temperature and Precipitation of Arabidopsis Thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature. Frontiers in Plant Science, 7, Article No. 1026.
https://doi.org/10.3389/fpls.2016.01026
[39]  Carins Murphy, M.R., Jordan, G.J. and Brodribb, T.J. (2014) Acclimation to Humidity Modifies the Link between Leaf Size and the Density of Veins and Stomata. Plant Cell and Environment, 37, 124-131.
https://doi.org/10.1111/pce.12136
[40]  Brodribb, T.J. and Jordan, G.J. (2011) Water Supply and Demand Remain Balanced during Leaf Acclimation of Nothofagus Cunninghamii Trees. New Phytologist, 192, 437-448.
https://doi.org/10.1111/j.1469-8137.2011.03795.x
[41]  Wu, J., Wu, X. and Zhang, J. (2019) Development Trend and Frontier of Stormwater Management (1980-2019): A Bibliometric Overview Based on CiteSpace. Water, 11, Article No. 1908.
https://doi.org/10.3390/w11091908
[42]  Li, X., Du, J. and Long, H. (2018) A Comparative Study of Chinese and Foreign Green Development from the Perspective of Mapping Knowledge Domains. Sustainability, 10, Article No. 4357.
https://doi.org/10.3390/su10124357
[43]  Hu, W., Li, C.-H., Ye, C., et al. (2019) Research Progress on Ecological Models in the Field of Water Eutrophication: CiteSpace Analysis Based on Data from the ISI Web of Science Database. Ecological Modelling, 410, Article ID: 108779.
https://doi.org/10.1016/j.ecolmodel.2019.108779
[44]  Brodribb, J.T., et al. (2010) Viewing Leaf Structure and Evolution from a Hydraulic Perspective. Functional Plant Biology, 37, 488-498.
https://doi.org/10.1071/FP10010
[45]  Nardini, A., Peda, G. and La Rocca, N. (2012) Trade-Offs between Leaf Hydraulic Capacity and Drought Vulnerability: Morpho-Anatomical Bases, Carbon Costs and Ecological Consequences. New Phytologist, 196, 788-798.
https://doi.org/10.1111/j.1469-8137.2012.04294.x
[46]  Walls, R.L. (2011) Angiosperm Leaf Vein Patterns Are Linked to Leaf Functions in a Global-Scale Data Set. American Journal of Botany, 98, 244-253.
https://doi.org/10.3732/ajb.1000154
[47]  Christine, S., Michael, R., Athena, M., et al. (2011) Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture. Plant Physiology, 156, 832-843.
https://doi.org/10.1104/pp.111.173856
[48]  Brodribb, T.J., Jordan, G.J. and Carpenter, R.J. (2013) Unified Changes in Cell Size Permit Coordinated Leaf Evolution. New Phytologist, 199, 559-570.
https://doi.org/10.1111/nph.12300
[49]  Boyce, C.K., Lee, J.-E., Feild, T.S., et al. (2010) Angiosperms Helped Put the Rain in the Rainforests: The Impact of Plant Physiological Evolution on Tropical Biodiversity. Annals of the Missouri Botanical Garden, 97, 527-540.
https://doi.org/10.3417/2009143
[50]  Stewart, J.J., Demmig-Adams, B., Cohu, C.M., et al. (2016) Growth Temperature Impact on Leaf Form and Function in Arabidopsis Thaliana Ecotypes from Northern and Southern Europe. Plant Cell and Environment, 39, 1549-1558.
https://doi.org/10.1111/pce.12720
[51]  Mclean, E.H., Prober, S.M., Stock, W.D., et al. (2014) Plasticity of Functional Traits Varies Clinally along a Rainfall Gradient in Eucalyptus Tricarpa. Plant Cell and Environment, 37, 1440-1451.
https://doi.org/10.1111/pce.12251
[52]  Mendez-Alonzo, R., Ewers, F.W., Jacobsen, A.L., et al. (2019) Covariation between Leaf Hydraulics and Biomechanics Is Driven by Leaf Density in Mediterranean Shrubs. Trees-Structure and Function, 33, 507-519.
https://doi.org/10.1007/s00468-018-1796-7
[53]  Boyce, C.K., Brodribb, T.J., Feild, T.S., et al. (2009) Angiosperm Leaf Vein Evolution Was Physiologically and Environmentally Transformative. Proceedings of the Royal Society B-Biological Sciences, 276, 1771-1776.
https://doi.org/10.1098/rspb.2008.1919
[54]  Brodribb, T.J. and Feild, T.S. (2010) Leaf Hydraulic Evolution Led a Surge in Leaf Photosynthetic Capacity during Early Angiosperm Diversification. Ecology Letters, 13, 175-183.
https://doi.org/10.1111/j.1461-0248.2009.01410.x
[55]  Yang, H., Shao, X. and Wu, M. (2019) A Review on Ecosystem Health Research: A Visualization Based on CiteSpace. Sustainability, 11, Article No. 4908.
https://doi.org/10.3390/su11184908
[56]  Schlueter, U., Braeutigam, A., Gowik, U., et al. (2017) Photosynthesis in C-3-C-4 Intermediate Moricandia Species. Journal of Experimental Botany, 68, 191-206.
https://doi.org/10.1093/jxb/erw391
[57]  Kumar, D. and Kellogg, E.A. (2019) Getting Closer: Vein Density in C-4 Leaves. New Phytologist, 221, 1260-1267.
https://doi.org/10.1111/nph.15491
[58]  Hodgson, J.G., Montserrat-Marti, G., Charles, M., et al. (2011) Is Leaf Dry Matter Content a Better Predictor of Soil Fertility than Specific Leaf Area? Annals of Botany, 108, 1337-1345.
https://doi.org/10.1093/aob/mcr225
[59]  De La Riva, E.G., Olmo, M., Poorter, H., et al. (2016) Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient. PLOS ONE, 11, e0148788.
https://doi.org/10.1371/journal.pone.0148788
[60]  Giraldo, J.P., Wheeler, J.K., Huggett, B.A., et al. (2014) The Role of Leaf Hydraulic Conductance Dynamics on the Timing of Leaf Senescence. Functional Plant Biology, 41, 37-47.
https://doi.org/10.1071/FP13033
[61]  Liang, X., He, P., Liu, H., et al. (2019) Precipitation Has Dominant Influences on the Variation of Plant Hydraulics of the Native Castanopsis fargesii (Fagaceae) in Subtropical China. Agricultural and Forest Meteorology, 271, 83-91.
https://doi.org/10.1016/j.agrformet.2019.02.043
[62]  Huang, L., Zhou, M., Lv, J., et al. (2020) Trends in Global Research in Forest Carbon Sequestration: A Bibliometric Analysis. Journal of Cleaner Production, 252, Article ID: 119908.
https://doi.org/10.1016/j.jclepro.2019.119908
[63]  Blonder, B., Violle, C., Bentley, L.P., et al. (2011) Venation Networks and the Origin of the Leaf Economics Spectrum. Ecology Letters, 14, 91-100.
https://doi.org/10.1111/j.1461-0248.2010.01554.x
[64]  Malenovsky, Z., Turnbull, J.D., Lucieer, A., et al. (2015) Antarctic Moss Stress Assessment Based on Chlorophyll Content and Leaf Density Retrieved from Imaging Spectroscopy Data. New Phytologist, 208, 608-624.
https://doi.org/10.1111/nph.13524

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413