全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

费米速度调制下石墨烯正常/铁磁/正常异质结电子输运
Electronic Transport in the Normal/Ferromagnetic/Normal Heterojunction of Graphene Modulated by the Fermi Velocity

DOI: 10.12677/mp.2024.142009, PP. 71-78

Keywords: 石墨烯,电子输运,费米速度,自旋极化率
Graphene
, Electron Transport, Fermi Velocity, Spin Polarizability

Full-Text   Cite this paper   Add to My Lib

Abstract:

空间速度控制石墨烯电子传输波已被提出,基于此,我们提出了一个石墨烯正常/铁磁/正常异质结,通过铁磁体沉积石墨烯层的近邻效应诱导的交换场,探讨基于空间速度调制控制的石墨烯异质结依赖于自旋的电子输运行为。研究结果发现:不同自旋的电子透射系数和传导系数明显依赖于费米速度和交换场,呈现出近似周期振荡特性。自旋反平行于交换场的传导系数明显高于自旋平行于交换场的传导系数,从而导致自旋极化的产生,自旋极化率可高达约?60%。这开启一种全新的依赖于自旋的电子器件的可能性。
Spatial velocity modulation control of electron transmission waves in graphene has been proposed. Based on this, we propose a normal/ferromagnetic/normal heterojunction of graphene, and investigate the spin-dependent electron transport behavior of the graphene heterojunction with spatial velocity modulation control in the presence of the exchange field induced by the ferromagnet deposition on the graphene layer. The results show that the transmission and conduction coefficients of the electron with different spins are obviously dependent on Fermi velocity and exchange field, and show approximately periodic oscillation characteristics. The conduction coefficient of spin inversion parallel to the exchange field is significantly higher than that of spin parallel to the exchange field, resulting in spin polarization, which can reach about ?60%. This could open up a whole new class of spin-dependent electronic devices.

References

[1]  Peres, N.M. (2010) Colloquium: The Transport Properties of Graphene: An Introduction. Reviews of Modern Physics, 82, 2673-2700.
https://doi.org/10.1103/RevModPhys.82.2673
[2]  Neto, A.C., Guinea, F., Peres, N.M., Novoselov, K.S. and Geim, A.K. (2009) The Electronic Properties of Graphene. Reviews of Modern Physics, 81, 109-162.
https://doi.org/10.1103/RevModPhys.81.109
[3]  Abanin, D.A., Morozov, S.V., Ponomarenko, L.A., Gorbachev, R.V., Mayorov, A.S., Katsnelson, M.I., et al. (2011) Giant Nonlocality near the Dirac Point in Graphene. Science, 332, 328-330.
https://doi.org/10.1126/science.1199595
[4]  Michetti, P. and Recher, P. (2011) Spintronics Devices from Bilayer Graphene in Contact to Ferromagnetic Insulators. Physical Review B, 84, Article ID: 125438.
https://doi.org/10.1103/PhysRevB.84.125438
[5]  Zou, J., Jin, G. and Ma, Y. (2009) Negative Tunnel Magnetoresistance and Spin Transport in Ferromagnetic Graphene Junctions. Journal of Physics: Condensed Matter, 21, Article ID: 126001.
https://doi.org/10.1088/0953-8984/21/12/126001
[6]  Haugen, H., Huertas, H.D. and Brataas, A. (2008) Spin Transport in Proximity-Induced Ferromagnetic Grapheme. Physical Review B, 77, Article ID: 115406.
https://doi.org/10.1103/PhysRevB.77.115406
[7]  Yokoyama, T. and Linder, J. (2011) Anomalous Magnetic Transport in Ferromagnetic Graphene Junctions. Physical Review B, 83, Article ID: 081418.
https://doi.org/10.1103/PhysRevB.83.081418
[8]  Yang, B., Bhujel, B., Chica, D., et al. (2023) Electrostatically Controlled Spin Polarization in Graphene-CrSBr Magnetic Proximity Heterostructures.
https://doi.org/10.21203/rs.3.rs-3706117/v1
[9]  Hu, J., Han, Y., Chi, X., Omar, G.J., Al Ezzi, M.M.E., Gou, J. and Ariando, A. (2023) Tunable Spin-Polarized States in Graphene on a Ferrimagnetic Oxide Insulator. Advanced Materials, 36, Article ID: 2305763.
https://doi.org/10.1002/adma.202305763
[10]  Pietrobon, L., Fallarino, L., Berger, A., Chuvilin, A., Casanova, F. and Hueso, L.E. (2015) Weak Delocalization in Graphene on a Ferromagnetic Insulating Film. Small, 11, 6295-6301.
https://doi.org/10.1002/smll.201502332
[11]  Zhou, B.H., Chen, X.W., Zhou, B.L., Ding, K.H. and Zhou, G.H. (2011) Spin-Dependent Transport for Armchair-Edge Graphene Nanoribbons between Ferromagnetic Leads. Journal of Physics: Condensed Matter, 23, Article ID: 135304.
https://doi.org/10.1088/0953-8984/23/13/135304
[12]  Seshadri, R., Sengupta, K. and Sen, D. (2016) Edge States, Spin Transport, and Impurity-Induced Local Density of States in Spin-Orbit Coupled Graphene. Physical Review B, 93, Article ID: 035431.
https://doi.org/10.1103/PhysRevB.93.035431
[13]  Attaccalite, C. and Rubio, A. (2009) Fermi Velocity Renormalization in Doped Graphene. Physica Status Solidi (b), 246, 2523-2526.
https://doi.org/10.1002/pssb.200982335
[14]  Hwang, C., Siegel, D.A., Mo, S.-K., Regan, W., Ismach, A., Zhang, Y., Zettl, A. and Lanzara, A. (2012) Fermi Velocity Engineering in Graphene by Substrate Modification. Scientific Reports, 2, Article No. 590.
https://doi.org/10.1038/srep00590
[15]  Pellegrino, F.M.D., Angilella, G.G.N. and Pucci, R. (2011) Transport Properties of Graphene across Strain-Induced Nonuniform Velocity Profiles. Physical Review B, 84, Article ID: 195404.
https://doi.org/10.1103/PhysRevB.84.195404
[16]  Jang, W.-J., Kim, H., Shin, Y.-R., Wang, M., Jang, S.K., Kim, M., et al. (2014) Observation of Spatially-Varying Fermi Velocity in Strained-Graphene Directly Grown on Hexagonal Boron Nitride. Carbon, 74, 139-145.
https://doi.org/10.1016/j.carbon.2014.03.015
[17]  D?az-Fernández, A., Chico, L., González, J.W. and Dom?nguez-Adame, F. (2017) Tuning the Fermi Velocity in Dirac Materials with an Electric Field. Scientific Reports, 7, Article No. 8058.
https://doi.org/10.1038/s41598-017-08188-3
[18]  Raoux, A., Polini, M., Asgari, R., Hamilton, A.R., Fazio, R. and MacDonald, A.H. (2010) Velocity-Modulation Control of Electron-Wave Propagation in Graphene. Physical Review B, 81, Article ID: 073407.
https://doi.org/10.1103/PhysRevB.81.073407
[19]  Lins, A.R.S. and Lima, J.R. (2020) Perfect Valley Filter Controlled by Fermi Velocity Modulation in Graphene. Carbon, 160, 353-360.
https://doi.org/10.1016/j.carbon.2020.01.031
[20]  Zheng, J.L. and Zhai, F. (2024) Valley Filtering and Valley-Polarized Collective Modes in Bulk Graphene Monolayers. Chinese Physics B, 33, Article ID: 017203.
https://doi.org/10.1088/1674-1056/acfd17

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133