全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

珠江口盆地深水区物源与运移机制分析:基于稀土元素和Sr-Nd同位素的研究
The Provenance and Transport Mechanism of Sediments in the Deep-Water Area of the Pearl River Mouth Basin: Based on the Rare Earth Elements and Sr-Nd Isotopes

DOI: 10.12677/ag.2024.143030, PP. 321-334

Keywords: 物源,运移机制,珠江口盆地,稀土元素,Sr-Nd同位素
Sediment Provenance
, Transport Mechanism, Pearl River Mouth Basin, Rare Earth Elements, Sr-Nd Isotopes

Full-Text   Cite this paper   Add to My Lib

Abstract:

边缘海沉积物对于研究气候变化、古海洋演化和大陆的剥蚀与抬升等方面具有非常重要的指示意义。本研究通过对珠江口盆地深水区Z8站位沉积重力柱的粒度、稀土元素和Sr-Nd同位素的分析,发现研究区沉积粒度较不稳定,平均粒径在19.70 μm左右变化,沉积物成分主要是粉砂,其次是黏土,砂的含量最少。根据沉积粒径可将沉积分为三个阶段:表层的沉积较不稳定阶段、中层的沉积稳定阶段与底层的沉积环境动荡阶段;稀土元素REE平均值为141.50 μg/g,呈现出Eu负异常,轻稀土占总稀土绝大部分比例(均超过75%);87Sr/86Sr平均值为0.723722,143Nd/144Nd平均值为0.512023,随深度的增加,87Sr/86Sr和εNd均呈现出先增大再减小最后保持稳定的趋势。与不同潜在物源区的稀土元素特征和Sr-Nd同位素的对比分析表明,近万年来,台湾岛为珠江口盆地深水区最大物源,黑潮和深海环流对台湾岛的沉积物运移起到了至关重要的作用;此外,红河、海南岛和湄公河也对研究区的物源有着一定贡献,这主要是依靠东亚季风驱动的表层环流和沿岸流对沉积物进行运移的。值得注意的是,由于珠江是距离Z8站位最近的大陆水系,因此也不能忽略珠江的物源贡献。
The sediments of marginal seas play a very important role in the study of climate change, paleo-ocean evolution and uplift denudation of continents. This study has studied the grain size, rare earth elements and Sr-Nd isotopes of the sedimentary gravity core at the Z8 site in the deep-water area of the Pearl River Mouth Basin and found that the sedimentary particle size in the study area was relatively unstable, with an average particle size of 19.70 μm; the sediment composition was mainly composed of silt, followed by clay, with the least sand content. Sedimentation can be divided into three stages based on the particle size of the sediments: The unstable stage of surface sedimentation, the stable stage of middle sedimentation, and the turbulent stage of bottom sedimentation environment; the average value of the REE (rare earth element) is 141.50 μg/g. There was a negative anomaly of Eu on the REE distribution curve. In addition, LREE (light rare earth element) accounted for the vast majority of REE (over 75%). The average value of 87Sr/86Sr ratio was 0.723722, and the mean value of 143Nd/144Nd was 0.512023, as the depth increases, both 87Sr/86Sr and εNd show a trend of first increasing, then decreasing, and finally maintaining stability. Comparative analysis of REE characteristics and Sr-Nd isotopes with different potential sources showed that Taiwan Island was the largest source in the deep-water area of the Pearl River Mouth Basin over the past ten thousand years, and the Kuroshio and deep-sea current played a crucial role in the sediment migration of Taiwan Island. What’s more, the Red River, Hainan Island and Mekong River also contributed to the provenance of the study area, which were mainly due to the sediment transport by the surface current and coastal current driven by the East Asian monsoon. It is worth noting that since the Pearl River is the nearest continental water system to Z8

References

[1]  Marenssi, S.A., Net, L.I. and Santillana, S.N. (2002) Provenance, Environmental and Paleogeographic Controls on Sandstone Composition in an Incised-Valley System: The Eocene La Meseta Formation, Seymour Island, Antarctica. Sedimentary Geology, 150, 301-321.
https://doi.org/10.1016/S0037-0738(01)00201-9
[2]  Smyth, H.R., Morton, A., Richardson, N., et al. (2014) Sediment Provenance Studies in Hydrocarbon Exploration and Production: An Introduction. Sediment Provenance Studies in Hydrocarbon Exploration and Production, 386, 1-6.
https://doi.org/10.1144/SP386.21
[3]  Wang, C., Wen, S., Liang, X., et al. (2018) Detrital Zircon Provenance Record of the Oligocene Zhuhai Formation in the Pearl River Mouth Basin, Northern South China Sea. Marine and Petroleum Geology, 98, 448-461.
https://doi.org/10.1016/j.marpetgeo.2018.08.032
[4]  Hu, Z., Huang, B., Geng, L., et al. (2022) Sediment Provenance in the Northern South China Sea since the Late Miocene. Open Geosciences, 14, 1636-1649.
https://doi.org/10.1515/geo-2022-0454
[5]  Steven, A.K. and Charles, A.N. (2011) Exploring the Transfer of Earth Surface Materials from Source to Sink. Eos, Transactions American Geophysical Union, 92, 188.
https://doi.org/10.1029/2011EO220007
[6]  Cai, G.Q., Li, S., Zhong, L.F., et al. (2020) Clay Minerals, Sr-Nd Isotopes and Provenance of Sediments in the Northwestern South China Sea. Journal of Asian Earth Sciences, 202, Article ID: 104531.
https://doi.org/10.1016/j.jseaes.2020.104531
[7]  Liu, Z., Zhao, Y., Colin, C., et al. (2016) Source-to-Sink Transport Processes of Fluvial Sediments in the South China Sea. Earth-Science Reviews, 153, 238-273.
https://doi.org/10.1016/j.earscirev.2015.08.005
[8]  Wei, G.J., Liu, Y. and Ma, J.L. (2012) Nd, Sr Isotopes and Elemental Geochemistry of Surface Sediments from the South China Sea: Implications for Provenance Tracing. Marine Geology, 319-322, 21-34.
https://doi.org/10.1016/j.margeo.2012.05.007
[9]  John, D.M., Katherine, L.F. and Christina, S.A. (1999) Flux and Fate of Fluvial Sediments Leaving Large Islands in the East Indies. Journal of Sea Research, 41, 97-107.
https://doi.org/10.1016/S1385-1101(98)00040-9
[10]  Zeng, Z., Zhu, H., Yang, X., et al. (2019) Using Seismic Geomorphology and Detrital Zircon Geochronology to Constrain Provenance Evolution and Its Response of Paleogene Enping Formation in the Baiyun Sag, Pearl River Mouth Basin, South China Sea: Implications for Paleo-Pearl River Drainage Evolution. Journal of Petroleum Science and Engineering, 177, 663-680.
https://doi.org/10.1016/j.petrol.2019.02.051
[11]  朱伟林, 张功成, 高乐. 南海北部大陆边缘盆地油气地质特征与勘探方向[J]. 石油学报, 2008, 29(1): 1-9.
[12]  张功成, 谢晓军, 王万银, 等. 中国南海含油气盆地构造类型及勘探潜力[J]. 石油学报, 2013, 34(4): 611-627.
[13]  张功成. 南海北部陆坡深水区构造演化及其特征[J]. 石油学报, 2010, 31(4): 528-533.
[14]  Li, P.L. and Rao, C. (1994) Tectonic Characteristics and Evolution History of the Pearl River Mouth Basin. Tectonophysics, 235, 13-25.
https://doi.org/10.1016/0040-1951(94)90014-0
[15]  Jaijel, R., Tchernov, B.N., Biton, E., et al. (2021) Optimizing a Standard Preparation Procedure for Grain Size Analysis of Marine Sediments by Laser Diffraction (MS-PT4SD: Marine Sediments-Pretreatment for Size Distribution). Deep Sea Research Part I: Oceanographic Research Papers, 167, Article ID: 103429.
https://doi.org/10.1016/j.dsr.2020.103429
[16]  Jacobsen, S. and Wasserburg, G. (1980) Sm-Nd Isotopic Evolution of Chondrites. Earth and Planetary Science Letters, 50, 139-155.
https://doi.org/10.1016/0012-821X(80)90125-9
[17]  周斌, 郑洪波, 杨文光, 等. 末次冰期以来南海北部物源及古环境变化的有机地球化学记录[J]. 第四纪研究, 2008, 28(3): 407-413.
[18]  Huang, Q.T., Hua, Y.J., Zhang, C.L., et al. (2023) Provenance and Transport Mechanism of Gravity Core Sediments in the Deep-Water Area of the Qiongdongnan Basin, Northern South China Sea. Marine Geology, 459, Article ID: 107043.
https://doi.org/10.1016/j.margeo.2023.107043
[19]  Clift, P.D., Wan, S. and Blusztajn, J. (2014) Reconstructing Chemical Weathering, Physical Erosion and Monsoon Intensity since 25 Ma in the Northern South China Sea: A Review of Competing Proxies. Earth-Science Reviews, 130, 86-102.
https://doi.org/10.1016/j.earscirev.2014.01.002
[20]  李辉, 韩宗珠, 闫天浩, 等. 稀土元素配分曲线的相似性度量算法及其在黄海沉积物物源判别中的应用[J]. 海洋地质前沿, 2023, 39(12): 88-97.
[21]  Dou, Y., Yang, S., Liu, Z., et al. (2010) Provenance Discrimination of Siliciclastic Sediments in the Middle Okinawa Trough since 30 Ka: Constraints from Rare Earth Element Compositions. Marine Geology, 275, 212-220.
https://doi.org/10.1016/j.margeo.2010.06.002
[22]  Yang, S.Y., Jung, H.S., Choi, M.S., et al. (2002) The Rare Earth Element Compositions of the Changjiang (Yangtze) and Huanghe (Yellow) River Sediments. Earth and Planetary Science Letters, 201, 407-419.
https://doi.org/10.1016/S0012-821X(02)00715-X
[23]  Awasthi, N. (2017) Provenance and Paleo-Weathering of Tertiary Accretionary Prism-Forearc Sedimentary Deposits of the Andaman Archipelago, India. Journal of Asian Earth Sciences, 150, 45-62.
https://doi.org/10.1016/j.jseaes.2017.10.005
[24]  严杰, 高建华, 李军, 等. 鸭绿江河口外海域柱状沉积物稀土元素的分布特征及物源指示[J]. 海洋通报, 2013, 32(6): 601-609.
[25]  张霄宇, 张富元, 高爱根, 等. 稀土元素在长江口及邻近陆架表层沉积物中的分布及物源示踪研究[J]. 中国稀土学报, 2009, 27(2): 282-288.
[26]  Xu, Z. and Han, G. (2009) Rare Earth Elements (REE) of Dissolved and Suspended Loads in the Xijiang River, South China. Applied Geochemistry, 24, 1803-1816.
https://doi.org/10.1016/j.apgeochem.2009.06.001
[27]  Li, C., Shi, X., Kao, S., et al. (2013) Rare Earth Elements in Fine-Grained Sediments of Major Rivers from the High-Standing Island of Taiwan. Journal of Asian Earth Sciences, 69, 39-47.
https://doi.org/10.1016/j.jseaes.2013.03.001
[28]  Borges, J.B., Huh, Y., Moon, S., et al. (2008) Provenance and Weathering Control on River Bed Sediments of the Eastern Tibetan Plateau and the Russian Far East. Chemical Geology, 254, 52-72.
https://doi.org/10.1016/j.chemgeo.2008.06.002
[29]  Tam, T.A., Yumul, G.P., Ramos, E., et al. (2005) Rare Earth Element Geochemistry of the Zigzag-Klondyke Sedimentary Rock Formations: Clues to the Evolution of the Baguio Mineral District (Luzon), Philippines. Resource Geology, 55, 217-224.
https://doi.org/10.1111/j.1751-3928.2005.tb00243.x
[30]  Taylor, S.R. and Mclennan, S.M. (1981) The Composition and Evolution of the Continental Crust: Rare Earth Element Evidence from Sedimentary Rocks. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 301, 381-398.
[31]  Sun, S.-S. and McDonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publication, 42, 313-345.
https://doi.org/10.1144/GSL.SP.1989.042.01.19
[32]  张磊, 麦发海, 王超群, 等. 海南岛北部晚新生代沉积物Sr-Nd同位素组成及其物源示踪[J]. 地质通报, 2022, 41(11): 1996-2006.
[33]  Chen, C.H., Jahn, B., Lee, T., et al. (1990) Sm-Nd Isotopic Geochemistry of Sediments from Taiwan and Implications for the Tectonic Evolution of Southeast China. Chemical Geology, 88, 317-332.
https://doi.org/10.1016/0009-2541(90)90096-P
[34]  Liu, Z., Colin, C., Huang, W., et al. (2007) Climatic and Tectonic Controls on Weathering in South China and Indochina Peninsula: Clay Mineralogical and Geochemical Investigations from the Pearl, Red, and Mekong Drainage Basins. Geochemistry Geophysics Geosystems, 8, Q05005.
https://doi.org/10.1029/2006GC001490
[35]  Hu, B., Li, J., Zhao, J., et al. (2018) Sr-Nd Isotopic Geochemistry of Holocene Sediments from the South Yellow Sea: Implications for Provenance and Monsoon Variability. Chemical Geology, 479, 102-112.
https://doi.org/10.1016/j.chemgeo.2017.12.033
[36]  Depaolo, D.J. and Johnson, R.W. (1979) Magma Genesis in the New Britain Island-Arc; Constraints from Nd and Sr Isotopes and Trace-Element Patterns. Contributions to Mineralogy and Petrology, 70, 367-379.
https://doi.org/10.1007/BF00371044
[37]  Liu, Y., Gao, S., Wang, Y.P., et al. (2014) Distal Mud Deposits Associated with the Pearl River over the Northwestern Continental Shelf of the South China Sea. Marine Geology, 347, 43-57.
https://doi.org/10.1016/j.margeo.2013.10.012
[38]  Liu, C., Clift, P.D., Carter, A., et al. (2017) Controls on Modern Erosion and the Development of the Pearl River Drainage Fa in the Late Paleogene. Marine Geology, 394, 52-68.
https://doi.org/10.1016/j.margeo.2017.07.011
[39]  Liang, W.D., Tang, T.Y., Yang, Y.J., et al. (2003) Upper-Ocean Currents around Taiwan. Deep-Sea Research Part II-Topical Studies in Oceanography, 50, 1085-1105.
https://doi.org/10.1016/S0967-0645(03)00011-0
[40]  Qu, T.D., Girton, J.B. and Whitehead, J.A. (2006) Deepwater Overflow through Luzon Strait. Journal of Geophysical Research-Oceans, 111, C01002.
https://doi.org/10.1029/2005JC003139
[41]  Wang, G., Xie, S., Qu, T., et al. (2011) Deep South China Sea Circulation. Geophysical Research Letters, 38, L05601.
https://doi.org/10.1029/2010GL046626
[42]  赵增祥, 万世明, 鞠梦珊, 等. 末次冰期以来南海西北部沉积物源和风化演变的Sr-Nd同位素与稀土元素证据[J]. 矿物岩石地球化学通报, 2023, 42(4): 702-716.
[43]  Li, M., Ouyang, T., Zhu, Z., et al. (2019) Rare Earth Element Fractionations of the Northwestern South China Sea Sediments, and Their Implications for East Asian Monsoon Reconstruction during the Last 36 Kyr. Quaternary International, 525, 16-24.
https://doi.org/10.1016/j.quaint.2019.09.007
[44]  Fang, G., Fang, W., Fang, Y., et al. (1998) A Survey of Studies on the South China Sea Upper Ocean Circulation. Acta Oceanographica Taiwanica, 37, 1-16.
[45]  Hsueh, Y. (2000) The Kuroshio in the East China Sea. Journal of Marine Systems, 24, 131-139.
https://doi.org/10.1016/S0924-7963(99)00083-4
[46]  刘玉民, 张志伟, 张新城, 等. 基于卫星高度计资料的黑潮入侵南海流径的时间变化规律研究[J]. 海洋与湖沼, 2023, 54(4): 951-962.
[47]  Liu, J., Xiang, R., Chen, M., et al. (2011) Influence of the Kuroshio Current Intrusion on Depositional Environment in the Northern South China Sea: Evidence from Surface Sediment Records. Marine Geology, 285, 59-68.
https://doi.org/10.1016/j.margeo.2011.05.010

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133