全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

竖向振动加速度三维特征图在地基注浆加固质量检验中的应用
Application of Three-Dimensional Characteristic Diagram of Vertical Vibration Acceleration in Quality Inspection of Foundation Grouting Reinforcement

DOI: 10.12677/hjce.2024.133034, PP. 302-312

Keywords: 振动测试法,振动加速度,加固效果,时域指标,三维特征图
Vibration Test Method
, Vibration Acceleration, Reinforcement Effect, Time Domain Index, Three-Dimensional Characteristic Diagram

Full-Text   Cite this paper   Add to My Lib

Abstract:

动力设备基础注浆加固效果的质量检验通常采用标准贯入、静力触探等原位测试方法,但是生产繁忙、空间狭小的厂房无法满足原位测试条件。由此,本文提出了一种地基注浆加固质量检验的振动加速度三维特征图法:在加固范围内合理选取测点,采集各测点的三维加速度时程记录;分析反映能量特性(均方值、方差、均方根值)、冲击特性(峰值因数、脉冲因数、裕度因数)、分布特性(峭度、偏度指标、偏态因数)的时域指标,在三维坐标系中绘出各指标的特征点,加固前、后所有测点的特征点形成振动加速度三维特征图,由此可以直观、全面、准确地评价地基加固效果。通过研究一大型精密设备地基注浆加固工程验证了该方法的有效性:加固后各测点反映能量、冲击、分布特性的时域指标均有不同程度的降低,表明注浆加固效果良好。
The quality inspection of grouting reinforcement effect of power equipment foundation usually adopts in-situ test methods such as standard penetration and static cone penetration. However, the factory with busy production and narrow space cannot meet the in-situ test conditions. Therefore, in this paper, a three-dimensional characteristic diagram method of vibration acceleration for quality inspection of foundation grouting reinforcement is proposed: The testing points are reasonably selected in the reinforcement range, and the three-dimensional acceleration time-history records of each testing point are collected. The time domain indexes reflecting energy characteristics (mean square value, variance, root mean square value), impact characteristics (crest factor, pulse factor, margin factor), and distribution characteristics (kurtosis, skewness index, skewness factor) are analyzed. The characteristic points of each index are drawn in the three-dimensional coordinate system. The characteristic points of all testing points before and after reinforcement form a three- dimensional characteristic diagram of vibration acceleration. Therefore, the effect of foundation reinforcement can be evaluated intuitively, comprehensively, and accurately. The effectiveness of the method is verified by studying a foundation grouting reinforcement project of large precision equipment: After reinforcement, the time domain indexes reflecting the energy, impact, and distribution characteristics of each testing point after reinforcement are reduced to varying degrees, indicating that the grouting reinforcement is effective.

References

[1]  袁路伟, 龙春甫, 廉清磊. 土建施工中注浆技术的应用[C]//2022年全国工程建设行业施工技术交流会论文集(下册). 北京: 《施工技术(中英文)》杂志社, 2022: 481-483.
[2]  滕延京, 张永钧, 闫明礼, 等. JGJ 79-2012建筑地基处理技术规范[S]. 北京: 中国建筑工业出版社, 2012.
[3]  龚晓南, 水伟厚, 王长科, 等. GB/T 50783-2012复合地基技术规范[S]. 北京: 中国计划出版社, 2012.
[4]  侯伟生, 施峰, 许国平, 等. JGJ 340-2015建筑地基检测技术规范[S]. 北京: 中国建筑工业出版社, 2015.
[5]  马文杰, 王长丹, 王炳龙, 等. 层状非饱和土中端承桩竖向振动响应的半解析算法[J]. 岩石力学与工程学报, 2023, 42(S1): 3767-3777.
[6]  Sharma, S., Venkateswarlu, H. and Hegde, A. (2019) Application of Machine Learning Techniques for Predicting the Dynamic Response of Geogrid Reinforced Foundation Beds. Geotechnical and Geological Engineering, 37, 4845-4864.
https://doi.org/10.1007/s10706-019-00945-7
[7]  陈志雄, 李康银, 王成龙, 等. 液化侧向扩展场地刚性排水管桩群桩振动台试验研究[J]. 工程力学, 2022, 39(9): 141-152.
[8]  许照刚, 娄宇, 陈骝. 水泥注浆改性土体对地面振动衰减作用的原位试验研究[J]. 振动与冲击, 2021, 40(21): 150-156.
[9]  王沁平, 贾京, 杨军. 软土地区科学装置微振动控制研究[J]. 建筑结构, 2023, 53(1): 95-101.
[10]  陈进. 软夹层地基上桩-土-层间隔震结构地震响应分析[J]. 工程抗震与加固改造, 2022, 44(4): 93-103.
[11]  Qu, T., Tang, B., Bian, Q., et al. (2023) Study on Shock Vibration Analysis and Foundation Reinforcement of Large Ball Mill. Scientific Reports, 13, Article No. 193.
https://doi.org/10.1038/s41598-022-26194-y
[12]  郭乾, 杜广印, 高常辉, 等. 黏土夹层对共振法加固效果影响试验研究[J]. 东南大学学报(自然科学版), 2019, 49(3): 427-432.
[13]  程远, 杨晔, 时刚. 振杆密实法处理杂填土地基试验[J]. 中国公路学报, 2023, 36(5): 99-108.
[14]  朱国俊, 门羿, 冯建军, 等. 含气率变化对不同型式混输泵的振动特性影响研究[J]. 振动与冲击, 2022, 41(17): 185-192.
[15]  Singh, S. and Vishwakarma, M.D. (2015) A Review of Vibration Analysis Techniques for Rotating Machines. International Journal of Engineering Research and Technology, 4, 757-761.
https://doi.org/10.17577/IJERTV4IS030823
[16]  盛美萍, 杨宏辉. 振动信号处理[M]. 北京: 电子工业出版社, 2017.
[17]  房立清, 杜伟, 齐子元. 机械振动信号处理与故障诊断[M]. 北京: 机械工业出版社, 2021.
[18]  杨阳. 基于振动测试的掘进机关键结构动态特性研究[D]: [博士学位论文]. 北京: 中国矿业大学(北京), 2017.
[19]  侯兴民, 李冉, 张玉洁. 基于脚步诱发结构振动的人员特征身份识别研究[J]. 振动与冲击, 2022, 41(23): 241-248 292.
[20]  吕苗荣, 张晓晶. 机械设备振动信号结构学[M]. 上海: 上海交通大学出版社, 2017.
[21]  成谢锋, 戴世诚, 赵鹏军. 基于心音信号的一种血压评估方法[J]. 物理学报, 2020, 69(14): 277-286.
[22]  孟令博, 耿修瑞, 杨炜暾. 一种改进的基于峭度指标的FastICA算法[J]. 中国科学院大学学报, 2019, 36(3): 410-416.
[23]  Sun, R., Yang, Z., Luo, W., et al. (2019) Weighted Sparse Representation Based on Failure Dynamics Simulation for Planetary Gearbox Fault Diagnosis. Measurement Science and Technology, 30, Article ID: 045008.
https://doi.org/10.1088/1361-6501/ab02d8
[24]  李舜酩, 李香莲. 振动信号的现代分析技术与应用[M]. 北京: 国防工业出版社, 2008.
[25]  Zhou, Y. (2016) Sensor Selection in Neuro-Fuzzy Modelling and Fault Diagnosis in HVAC System. Journal of Intelligent & Fuzzy Systems, 30, 2365-2381.
https://doi.org/10.3233/IFS-152006
[26]  Aszkler, C. (2005) Chapter 5. Acceleration, Shock and Vibration Sensors. In: Wilson, J.S., Ed., Sensor Technology Handbook, Newnes, Burlington, 137-159.
https://doi.org/10.1016/B978-075067729-5/50045-8
[27]  Niusha, N., Sherif, B. and Justin, M. (2022) Development of Wireless Smart Sensor Network for Vibration-Based Structural Health Monitoring of Civil Structures. Structure and Infrastructure Engineering, 18, 345-361.
[28]  侯兴民, 孙蒙, 张一林. 振动法与超声波法测试岩块纵波波速的实测比对研究[J]. 振动与冲击, 2021, 40(9): 264-269.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413